Tìm giới hạn bằng máy tính cầm tay – Phạm Minh Đức

Giới thiệu Tìm giới hạn bằng máy tính cầm tay – Phạm Minh Đức

Học toán online.vn gửi đến các em học sinh và quý thây cô Tìm giới hạn bằng máy tính cầm tay – Phạm Minh ĐứcChương Giới hạn.

Tài liệu môn Toán 11  và hướng dẫn giải chi tiết các đề thi từ cơ bản đến vận dụng cao sẽ luôn được cập thường xuyên từ hoctoanonline.vn , các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất nhé.

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Toán 11 tại đây.

Text Tìm giới hạn bằng máy tính cầm tay – Phạm Minh Đức
Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 TÌM GIỚI HẠN BẰNG MÁY TÍNH CẦM TAY I.Các phím cần dùng 1. Phím CALC (Solve) -Phím CALC trong máy tính Casio có chức năng là gán giá trị , là một trong những tính năng hay của máy. Ví dụ: Nhập biểu thức X+1 vào máy tính và tính giá trị biểu thức với x =1, x=2, x=3 B1: Ấn Alpha (để nhập biến x) và +1 B2: Ấn phím CALC máy sẽ hiện X? B3: Bấm phím 1 rồi ấn ‘=’ ta sẽ thu được kết quả khi thay x=1 vào biểu thức Kết luận : Như ta thấy máy đã thay biến X bằng giá trị 1 nên X +1 sẽ được hiểu 1+1 =2 . Đến đây bạn đọc có thể hiểu được công dụng của phím CALC và có thể thử thay x=2 ,x=3 … thậm chí biểu thức phức tạp hơn để hiểu rõ phím . Còn bây giờ chúng ta đi đến phần tính giới hạn. II. Tìm giới hạn Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 1. Dạng chứa lũy thừa VD Hình ảnh về những câu lim dạng lũy thừa: a. lim (2)n  4.5n1 2.4n  3.5n 2n  3n  4n3 b. lim n n1 n1 2 3  4 c. lim 2n  3n  4.5n2 2n1  3n2  5n1 Vậy để làm những con trên ta phải làm thể nào ? -Nhập biểu thức vào máy tính -Ta CALC cho x =100 và ấn ‘=’ máy sẽ cho ra kết quả 2. Dạng x -> +  và x -> –  VD Hình ảnh về những câu lim dạng x -> +  và x -> –  : a. xlim  x2  x  4 x2 b. lim ( x3  2×2  x  4) x x2  x  2 x x3  2x  2 lim Vậy để làm những con trên ta phải làm thể nào ? -Nhập biểu thức vào máy tính -Vì x ở đây tiến đến âm vô cùng , dương vô cùng là những số vô cùng lớn và vô cùng bé nên ta gán x bằng những số vô cùng hoặc vô cùng bé phím CALC Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 + Nếu x ->+  , ta bấm CALC rồi nhập 99999999 ( Được hiểu như 1 số vô cùng lớn ứng với +  ) + Nếu x ->-  , ta bấm CALC rồi nhập -99999999 (Được hiểu như 1 số vô cùng bé ứng với –  ) Lưu ý: Theo kinh nghiệm các bạn chỉ nên nhập khoảng từ 6 đến 7 số 9 thôi vì có nhiều trường hợp nhập quá nhiều số 9 sẽ ra sai kết quả, trường hợp khi đáp án là 0 là nên CALC lại và giảm bớt số 9 đi xuống còn khoảng 4 đến 5 lần để kiểm tra xem đáp án có đúng bằng 0 không, ta sẽ nói kĩ hơn trong ví dụ 3. Dạng x-> x0 ; x-> x0- ; x-> x0+ VD Hình ảnh về những câu lim dạng x-> x0 ; x-> x0- ; x-> x0+ : a. lim x 3 9  x2 x 1  2 b. lim x 3 x3  27 6  x  4x  3 Vậy để làm những con trên ta phải làm thể nào ? -Nhập biểu thức vào máy tính -Vì x ở đây tiến đến 1 số x0 nhưng không bao giờ x = x0 vì thế ta CALC x0 +0,000000001 hoặc x0 – 0,00000000001 là nhưng số gần x0 nhất nhưng không bao giờ bằng x0 + Nếu x-> x0, ta bấm CALC rồi nhập x0 +0,00000001 hoặc x0 -0,00000001 đều như nhau +Nếu x-> x0+ là những số lớn hơn x, ta bấm CALC rồi nhập x0 + 0,00000001 +Nếu x-> x0- là những số nhỏ hơn x, ta bấm CALC rồi nhập x0 – 0,00000001 Lưu ý: Cũng như trên ta chỉ nên nhập từ 6 đến 7 số 0 sau dấu phẩy 4. Kết quả hiện thị -Nếu sau khi CALC máy hiện ra kết quả từ 1 đến 3 chữ số thì đó chính là kết quả chỉ Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 cần đối chiếu đáp án và khoanh – Nếu sau khi CALC máy hiện ra kết quả là 1 dãy số dài thì kết quả chính là vô cùng và nhìn dấu để biết đó là â hay dương vô cùng VD 9898695869586958 là dương vô cùng; -5438938759345 là âm vô cùng ,85985445.1034 là dương vô cùng,… -Nếu sau khi CALC máy hiện ra kết quả có 10 mũ âm thì kết quả là 0 VD 32323.10-20=0,000000000000000032323 là 1 số rất rất bé nên bằng 0 III. Ví dụ minh họa 3n2  5n  4 VD1 lim 2  n2 B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 9999999 ấn ‘=’ ta được kết quả là -3 VD2 xlim  x2  x  4 x2 B1 Nhập biểu thức vào máy tính Phạm Minh Đức – H/s THPT Đống Đa B2 Bấm CALC nhập 9999999999 ấn ‘=’ ta được kết quả là -1 VD3 lim ( x3  2×2  x  4) x B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 9999999999 ấn ‘=’ ta được kết quả là 1 dãy số rất lớn nên kết quả sẽ là dương vô cùng đúng với những gì chúng ta nói ở mục kết quả hiển thị bên trên VD4 lim x 3 9  x2 x 1  2 B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 3+0,00000000001 ấn ‘=’ ta được kết quả là 1 số sấp sỉ 24 vậy đáp án là 24 VD5 xlim  2x 2  x  1 x x2 1 B1 Nhập biểu thức vào máy tính Sđt: 01252344751 Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B2 Bấm CALC nhập -9999999999 ấn ‘=’ ta được kết quả là -2 VD6 lim x 1 x2  2x  6  3x 1  x3 B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 1+0,00000001 hoặc 10,00000001 và ấn ‘=’ ta được kết quả là -2 -Đến đây ta có thể đối chiếu đáp án với các phân số đề bài cho bằng cách đổi các phân số ra số thập phân hoặc biến dãy số 0,777778 trên thành 1 phân số bằng cách: -Nhập phần nguyên trước , bấm dấu sau đó ấn phím Alpha và phím rồi nhập chu kì tuần hoàn của dãy số rồi ấn phím ‘=’ Vậy ta đã đổi được số thập phân 0,77777778 thành 7/9 do đó đáp án là 7/9 (2)n  4.5n1 VD7 lim 2.4n  3.5n Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 100 và bấm ‘=’ ta thu được kết quả là 6,6666666 B3 Nhập phần nguyên trước là số -6 , bấm dấu sau đó ấn phím Alpha và phím rồi nhập chu kì tuần hoàn của dãy số là -6 rồi ấn phím ‘=’ Vậy kết quả cuối cùng của chúng ta là 20 3 2n  3n  4n3 VD8 lim n n1 n1 2 3  4 B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 100 ấn ‘=’ ta thu được kết quả là -256 2n  3n  4.5n2 VD9 lim n1 n2 n1 2 3 5 Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B1 Nhập biểu thức vào máy tính B2 Bấm CALC nhập 100 ấn ‘=’ ta thu được kết quả là 20 VD10 lim x( 2)  3x  6 x2 B1 Trước tiên ta phải nhập giá trị tuyệt vào máy bằng cách ấn phím Shift và B2 Nhập biểu thức vào máy tính B3 Bấm CALC và nhập 2+0,00000001 ( vì x >2) ta được kết quả 2x 2  3x  1 VD11 lim x1 x3  x 2  x  1 Cách 1 B1 Nhập biểu thức vào máy tính Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B2 Bấm CALC và nhập 1+0,00000001 ta được kết quả là 1/2 Cách 2 : Quy tắc l’Hôpital -Dạng chung của quy tắc l’Hôpital bao gồm nhiều trường hợp khác. Giả sử c và L là các số thuộc tập số thực mở rộng (tức là bao gồm tập số thực và hai giá trị dương vô cùng và âm vô cùng). Nếu lim f ( x)  lim g ( x) hoặc lim f ( x)   lim g ( x)   x c Và giả sử lim xc Thì lim x c x c x c x c f ‘( x) L g ‘( x) f ( x) L g ( x) 2x 2  3x  1 4x  3 1 Ta có lim = lim 2  3 2 x1 x  x  x  1 x 1 3 x  2 x  1 2 -Ứng dụng qui tắc này ta có thể nhẩm được nhanh rất nhiều câu chỉ trong vài giây tuy nhiên định lý này chỉ áp dụng cho 2 dạng vô định đó là 0 ;  áp dụng cho các 0  dạng khác sẽ không cho kết quả đúng VD lim x2 x3  x 2  2 x  8 x2  3x  2 Cách 1 B1 Nhập biểu thức vào máy tính Phạm Minh Đức – H/s THPT Đống Đa B2 Bấm CALC và nhập 2+0,00000001 ta được kết quả là 14 Cách 2 Ta có lim x2 x3  x 2  2 x  8 3×2  2 x  2 3.22  2.2  2 lim  14 = x2 = 2.2  3 x2  3x  2 2x  3 x3  4x 2  4x  3 VD lim x3 x2  3x Cách 1 B1 Nhập biểu thức vào máy tính B2 Bấm CALC và nhập 3+0,00000001 ta được kết quả là 7/3 Cách 2 Ta có lim x3 VD lim1 x 2 3×2  8x  4 3.32  8.3  4 7 x3  4x 2  4x  3 lim   = x3 2x  3 x2  3x 2.3  3 3 8x 3  1 6x 2  5x  1 Cách 1 B1 Nhập biểu thức vào máy tính B2 Sđt: 01252344751 Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B2 Bấm CALC và nhập 0,5+0,00000001 ta được kết quả là 6 Cách 2 2 1 24.   2 3 24x 1 = 2 6 Ta có lim1 8x lim1  2 1 x 12x  5 x 6x  5x  1 12.  5 2 2 2 VD11 Tính tổng S= 1  1  1  1  … 2 4 8 -Nhìn câu này nhiều bạn có thể nhận ra ngay đây là một cấp số nhân lùi vô hạn và u việc tính tổng có thể dễ dàng nhờ vào công thức Sn  1 tuy nhiên nếu không nhớ 1 q công thức ta vẫn có thể tính tổng dãy số nhờ vào máy tính bỏ túi. -Chúng ta sẽ dùng phím Shift và ấn và máy sẽ hiện tổng xích ma dùng cho việc tính tổng -Muốn tính tổng trước tiên ta phải tìm được số hạng tổng quát của dãy số 1 1 1 1 vậy số hạng tổng quát có thể là 1     … ta thấy rằng dãy số có công bội là 2 4 8 2 1 2n -Sau khi có được số hạng tổng quát ta bắt đầu tính tổng B1 Nhập số hạng tổng quát vào ô ngoài cùng Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B2 Nhập vào ô x= giá trị khởi đầu của x ở đây là 0 vì 10  1 2 B3 Nhập vào ô còn lại giá trị cuối cùng của n, vì n ở đây rất lớn nên ta mặc định coi là 100 B4 Ấn ‘=’ đợi 1 lúc ta thu được kết quả 2 -Nhờ có công cụ xích ma ta có thể dễ dàng tính được tổng của dãy số mà không cần dùng công thức, tuy nhiên việc quan trọng nhất là ta phải tìm được số hạng tổng quát của dãy số, ứng dụng thành thạo ta có thể dễ dàng tính tổng cũng như tính nhưng lim Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 chứa dãy số là cấp số nhân cấp số cộng hay một dãy số bất kì. 2 3 VD Tỉnh tổng 1+ 0,9  (0,9)  (0,9)  … B1 Tìm số hạng tổng quát của dãy số trên -Ta thấy qui luật là mỗi số hạng về sau đều nhân thêm 1 lần 0,9 vậy số hạng tổng quát có thể là 0,9n B2 Nhập số hạng tổng quát vào ô ngoài cùng B3 Cho x chạy từ x=0 (vì x0=1) đến 100 như ta qui ước bên trên ta thu được kết quả là 9,999 tương đương kết quả là 10 1  3  32  …  3n VD lim 1  4  42  …  4n Phương pháp: – Thứ nhất ở đây có 2 dãy tổng vì thế ta phải bấm 2 lần xích ma – Thứ hai 2 dãy số này đều đa cho số hạng tổng là 4n và 3n vậy nên ta chỉ cần điền số hạng tổng quát vào xĩhs ma và cho x chạy từ x=0 đến 100 như trên B1 nhập biểu thức Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 B2 cho x chạy từ 0 đến 100 ấn ‘=’ ta thu được kết quả (Có thể mất 1-2 phút). Kết quả thu được 1 dãy số với mũ âm là 3,608.10-13 tương đương 0.00000000000003608 là 1 số rất nhỏ nên đáp án là 0 VD lim  1 1 1 1     …   n(n  1)   1.2 2.3 3.4 Phương pháp: -Ta thấy dãy số trên đã cho số hạng tổng quát vì thế bài toán trở nên dễ dàng hơn, ta chỉ cần nhập số hạng tổng quát vào xích ma và cho x chạy từ 1 (vì khi n=1 thay vào số hạng tông quát ta được 1 là số hạng đâu tiên) 1.2 dến 100 B1 Nhập biểu thức B2 Cho x chạy từ 1 đến 100 ấn ‘=’ ta được kết quả là 0.99 tương đương kết quả là 1 *Lưu ý: Đối với những bài tính tổng bằng xích ma như trên bạn cho n càng lớn thì đáp án càng chính xác hơn nhưng nếu quá lớn thì máy sẽ tính rất lâu hoặc bị tràn màn hình. IV Bài tập áp dụng Phạm Minh Đức – H/s THPT Đống Đa Bài 1: Tìm giới hạn các dãy số sau Sđt: 01252344751 Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 Bài 2 Tính giới hạn các dãy số sau Câu 1. Cho dãy số (un) với un= 2n n5 n.3 B. 1 A. 0 C. 2 D. -1 Câu 2. Gía trị của lim ( n2 -2n-1) bằng: B. + A. 111 111 000  Câu 3. Giá trị của lim  D. -1 2n3  n  n4 bằng: n2 (2n2  1) B. + A. -1 C. –  C.  1 D. 0 2 Câu 4. Giá trị của lim ( n2  2n  3  n  1 ) bằng: A. 0 B.1 Câu 5. Gía trị của lim A. 1 C.2 D.3 4n1  5n  2 bằng : 6n  5n B. 2 5 C. 0 , 6 D. 0 Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751 32n2  4.2n Câu 6 Giá trị của lim n1 n bằng: 9 4 A. 1 B. 1 C. -1 D. 0 3 Câu 7. Giá trị của lim 4n  5n bằng : 4n2  3n4 B. – A. 15 C. 7  D. 0 6 2n  4sin3 n Câu 8. Giá trị của lim bằng: 3n  1 B. 2 A. 1 C. +  3 Câu 9. Giá trị của lim 1  3  32  …  3n bằng : 1  4  42…  4n B. 1 A. 3 5 D. 0 2 C. 2 D. 0 3 Câu 10. Đặt S= 1  2   2    2   … Giá trị của S bằng : 3 3 3 B. 5 A. 1 C. 2 3 2 3 D. 1 3 Bài 3 Tìm giới hạn các hàm số sau Câu 1. Gía trị của lim x 2 4  15 A. 5 2x 2  3x  1  4 bằng: x3 B. 1 C. 0 x3  3x  2 Câu 2. Gía trị của lim bằng : x1 x2 1 D. 2 Phạm Minh Đức – H/s THPT Đống Đa B. 1 A. 0 Sđt: 01252344751 C. 1 D. 2 ( x2  5x  6)( x3 1) Câu 3. Giá trị của lim bằng: x2 4  x2 B. 7 A. 0 4 Câu 4. Gía trị của xlim  4 Câu 5. Gía trị của xlim 2 A.  1 A.  1  D. –  D. 13 16 2 2x  1  x  5 16  x 2 B.  5 48 48 Câu 7. Gía trị của lim x 3 C. + C. 13 4 Câu 6. Gía trị của lim x 4 4 3x 2  x  2  4 2x  x2 B. 3 8 D. 1 3×3  3x  1 bằng: 4x  x2 B. 5 A. 3 A. 5 5 C.  7 C. 2 49 D. 5 6 x3  27 bằng: 6  x  4x  3 B. 5 4 C. 5 6 D.-57 2x 2  11x  5 Câu 8. Gía trị của lim bằng: x 5 4x  5  x A. 1 8 B. 1 7 C. 1 5 D. -16 Phạm Minh Đức – H/s THPT Đống Đa Câu 9. Gía trị của lim x 1 x2  2x  6  3x 1  x3 A. 6 7 Câu `10. Gía trị của xlim  A. 3 Sđt: 01252344751 B.  7 9 C. 7 D. C. -2 D. -3 1 9 x2  x  4 x2 B. -1 Phạm Minh Đức – H/s THPT Đống Đa Sđt: 01252344751
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top