Ôn tập giữa học kì 1 Toán 10 năm 2021 – 2022 trường THPT Trần Phú – Hà Nội

Giới thiệu Ôn tập giữa học kì 1 Toán 10 năm 2021 – 2022 trường THPT Trần Phú – Hà Nội

Học toán online.vn gửi đến các em học sinh và bạn đọc Ôn tập giữa học kì 1 Toán 10 năm 2021 – 2022 trường THPT Trần Phú – Hà Nội.

Tài liệu môn Toán 10 và hướng dẫn giải chi tiết các đề thi sẽ luôn được cập thường xuyên từ hoctoanonline.vn, các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất miễn phí nhé.

Tài liệu Ôn tập giữa học kì 1 Toán 10 năm 2021 – 2022 trường THPT Trần Phú – Hà Nội

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Toán 10 tại đây

SỞ GD-ĐT HÀ NỘI TRƯỜNG THPT TRẦN PHÚ-HOÀN KIẾM Năm học 2021-2022 NỘI DUNG ÔN TẬP GIỮA HỌC KÌ I MÔN TOÁN KHỐI 10. I-PHẦN BÀI TẬP TRẮC NGHIỆM Câu 1 . Trong các câu sau, có bao nhiêu câu là mệnh đề ? a) b) c) d) Hãy đi nhanh lên! Hà Nội là thủ đô của Việt Nam. 5 + 7 + 4 = 15. Năm 2022 là năm nhuận. A.4 B.3 C.1 Câu 2 . Trong các mệnh đề sau, mệnh đề nào đúng ? D.2 A.Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đó đều là số chẵn. B.Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đó đều là số chẵn. C.Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đó đều là số lẻ. D.Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đó đều là số lẻ. Câu 3 . Mệnh đề phủ định của mệnh đề : “∀𝑥 ∈ 𝑅, 𝑥 2 + 𝑥 + 5 > 0” là : A.∃𝑥 ∈ 𝑅, 𝑥 2 + 𝑥 + 5 ≤ 0 B. ∀𝑥 ∈ 𝑅, 𝑥 2 + 𝑥 + 5 ≤ 0 C. ∃𝑥 ∈ 𝑅, 𝑥 2 + 𝑥 + 5 < 0 D. ∀𝑥 ∈ 𝑅, 𝑥 2 + 𝑥 + 5 < 0 Câu 4 . Cho 𝑋 = {𝑥 ∈ 𝑅, 2𝑥 2 − 5𝑥 + 3 = 0}, khẳng định nào sau đây đúng ? A.X = {0} B.X = {1} 3 C.X = { } 2 Câu 5 . Trong các tập hợp sau, tập nào là tập rỗng ? 3 D.X = {1; } 2 A.𝑀 = {𝑥 ∈ 𝑁, 2𝑥 − 1 = 0} B.𝑀 = {𝑥 ∈ 𝑄 , 3𝑥 + 2 = 0} 2 D.𝑀 = {𝑥 ∈ 𝑍, 𝑥 2 = 0} C.𝑀 = {𝑥 ∈ 𝑅, 𝑥 − 6𝑥 + 9 = 0} Câu 6 . Cho hai tập hợp A = {1 ; 2} và B = {1; 2; 3; 4; 5}. Có tất cả bao nhiêu tập hợp X thỏa mãn 𝐴⊂𝑋⊂𝐵? A.5 B.6 C.7 D.8 2 Câu 7 . Cho hai tập hợp 𝐴 = {𝑥 ∈ 𝑍, (𝑥 + 3)(𝑥 − 3) = 0} và 𝐵 = {𝑥 ∈ 𝑅, 𝑥 2 + 6 = 0}. Khi đó : A.B A = B C.A B = A B.𝐴 ⊂ 𝐵 D.𝐴 ∩ 𝐵 = 𝐴 Câu 8 . Cho hai tập hợp 𝐴 = {2; 4; 6; 8} 𝑣à 𝐵 = {4; 8; 9; 0} . Xét các khẳng định sau đây: 𝐴 ∩ 𝐵 = {4; 8} ; 𝐴 ∪ 𝐵 = {0; 2; 4; 6; 8; 9} ; 𝐵𝐴 = {2; 6}. Có bao nhiêu khẳng định đúng trong các khẳng định trên ? A.2 B.3 C.0 D.1 Câu 9 . Cho hai tập hợp 𝐴 = {2; 3; 5; 7} 𝑣à 𝐵 = {𝑥 ∈ 𝑍, |𝑥 + 1| ≤ 2} . Khi đó 𝐴 ∩ 𝐵 là : A.{3} B.{2} C.{2;3} D.∅ Câu 10 . Cho hai tập hợp 𝐴 = (−∞; −2]; 𝐵 = [3; +∞); 𝐶 = (0; 4). 𝑇ì𝑚 𝑡ậ𝑝 ℎợ𝑝 (𝐴 ∪ 𝐵) ∩ 𝐶 ? A.[3; 4) C.[3; 4] B.(−∞; −2] ∪ (3; +∞) D.(−∞; −2) ∪ [3; +∞) Câu 11 . Cho hai tập hợp 𝐴 = (−∞; 0) ∪ (4; +∞); 𝐵 = [−2; 5]. 𝑇ì𝑚 𝐴 ∩ 𝐵? A.[−2; 0) ∪ (4; 5] B.(−∞; +∞) C.∅ Câu 12 . Cho tập hợp A = (2; 5]. Tìm R A ? D.(−2; 0) ∪ (4; 5) A.(−∞; 2] ∪ (5; +∞) B.(−∞; 2) ∪ (5; +∞) C.(2; 5) D.(−∞; 2) ∪ [5; +∞) Câu 13. Cho hai tập hợp 𝐴 = [0; 6]; 𝐵 = {𝑥 ∈ 𝑅, |𝑥| < 2}. 𝐾ℎ𝑖 đó, 𝑡ì𝑚 𝑡ậ𝑝 ℎợ𝑝 𝐴 ∪ 𝐵 ? A.(-2; 6) B.[0; 2) C.(0; 2) D.(-2; 6] Câu 14 . Cho ba tập hợp 𝐴 = [−2; 4]; 𝐵 = {𝑥 ∈ 𝑅, 0 ≤ 𝑥 < 4}; 𝐶 = {𝑥 ∈ 𝑅, |𝑥| > 1}. Khi đó : A.𝐴 ∩ 𝐵 ∩ 𝐶 = (1; 4) B.𝐴 ∩ 𝐵 ∩ 𝐶 = [1; 4] C.𝐴 ∩ 𝐵 ∩ 𝐶 = (1; 4] D. 𝐴 ∩ 𝐵 ∩ 𝐶 = [1; 4) Câu 15 . Cho hai tập hợp 𝐴 = [−1; 3); 𝐵 = [𝑎; 𝑎 + 3]. 𝑇ì𝑚 𝑎 ∈ 𝑅 𝑡ℎì 𝐴 ∩ 𝐵 = ∅ ? 𝑎≥3 𝑎>3 𝑎≥3 𝑎>3 B. [ C. [ D. [ 𝑎 < −4 𝑎 < −4 𝑎 ≤ −4 𝑎 ≤ −4 Câu 16 . Cho hai tập hợp khác rỗng 𝐴 = (𝑚 − 1; 4]; 𝐵 = (−2; 2𝑚 + 2), 𝑚 ∈ 𝑅. 𝑇ì𝑚 𝑚 để 𝐴 ∩ 𝐵 ≠∅? A.[ A.−1 < 𝑚 < 5 B.𝑚 > −3 Câu 17 . Tập xác định của hàm số 𝑦 = 1 3 A.[ ; ) 2 2 1 2 B. [ ; ) 2 3 1 √2−3𝑥 C.−2 < 𝑚 < 5 + √2𝑥 − 1 là : 2 C.( ; +∞) 3 D.1 < 𝑚 < 5 1 D.[ ; +∞) 2 Câu 18 . Tập xác định của hàm số 𝑦 = √2𝑥 − 3 + √4 − 3𝑥 là : 3 4 4 3 D.∅ C.[ ; ] 2 23 3 4 3 2 −2(𝑥 − 2)𝑘ℎ𝑖 − 1 ≤ 𝑥 < 1 Câu 19 . Cho hàm số 𝑦 = 𝑓(𝑥) = { . 𝑇í𝑛ℎ 𝑓(−1)? √𝑥 2 − 1 𝑘ℎ𝑖 𝑥 ≥ 1 A.[ ; ] 2 3 B. [ ; ] D. – 5 √3 − 𝑥 𝑣ớ𝑖 𝑥 ∈ (−∞; 0) Câu 20 . Tập xác định của hàm số 𝑦 = 𝑓(𝑥) = { là 1 √ 𝑣ớ𝑖 𝑥 ∈ (0; +∞) A.– 6 B.6 C.5 𝑥 A.R {0} B.R [0;3] C.R {0 ; 3} 𝑥+1 Câu 21 . Hàm số 𝑦 = xác định trên [0; 1) khi D. R 𝑥−2𝑚+1 1 1 𝑚≥2 𝑚 < D. [ 2 2 C.[ 𝑚<1 𝑚≥1 Câu 22. Trong các hàm số 𝑦 = |𝑥|; 𝑦 = 𝑥 2 + 4𝑥 ; 𝑦 = −𝑥 4 + 2𝑥 2 có bao nhiêu hàm số chẵn ? A.𝑚 < B.𝑚 ≥ 1 A.0 B.1 C.2 Câu 23 . Hàm số nào sau đây là hàm số lẻ ? D.3 A.𝑦 = −𝑥 B. 𝑦 = 2 −𝑥 2 +1 C. 𝑦 = − 𝑥−1 2 D. 𝑦 = −𝑥 2 +2 Câu 24 . Cho hàm số 𝑦 = 𝑓(𝑥)𝑣à 𝑦 = 𝑔(𝑥) có đồ thị như hình bên. Tính 𝑓(3) + 𝑔(4)? A.7 B.5 C.6 D.4 Câu 25 . Cho hàm số 𝑦 = 𝑓(𝑥) có đồ thị như hình vẽ của câu 24 . Hàm số 𝑦 = 𝑓(𝑥) đồng biến trên khoảng nào sau đây : A.(1;2) B.(2;3) C.(1;3) D.R (2𝑚 Câu 26 . Tìm m để hàm số 𝑦 = + 1)𝑥 + 𝑚 − 3 đồng biến trên R ? 1 1 1 1 A.𝑚 > B.𝑚 < C. 𝑚 < − D. 𝑚 > − 2 2 2 2 Câu 27 . Tìm m để hàm số 𝑦 = 𝑚(𝑥 + 2) − 𝑥(2𝑚 + 1) nghịch biến trên R ? −1 1 C. 𝑚 > −1 B.𝑚 < D. 𝑚 > − 2 2 Câu 28 . Có bo nhiêu giá trị nguyên của tham số 𝑚 ∈ [−2022; 2022] để hàm số 𝑦 = (𝑚 − 2)𝑥 + 2𝑚 đồng biến trên R ? A.𝑚 > −2 A.2109 B.2020 C.2021 D.2022 Câu 29 . Tìm tất cả các giá trị thưc của m để đường thẳng 𝑦 = (3𝑚 + 2)𝑥 − 7𝑚 − 1 vuông góc với đường thẳng 𝑦 = 2𝑥 − 1. A.𝑚 = 0 −5 5 −1 D. 𝑚 > B. 𝑚 = C. 𝑚 < 2 6 6 Câu 30 . Tìm a, b để đồ thị hàm số y = ax + b đi qua các điểm A(-2; 1) và B(1; - 2) . A.a = - 2 , b = -1 B.a = 2 , b = 1 C.a = b = 1 D.a = b = -1 Câu 31 . Cho hàm số 𝑦 = 2𝑥 + 𝑚 + 1. Tìm giá trị thực của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3. A.𝑚 = 7 Câu 32 . B. 𝑚 = 3 C. 𝑚 = −7 Đồ thị ở hình vẽ bên là của hàm số nào dưới đây ? A.𝑦 = 𝑥 + 1 B. 𝑦 = −𝑥 + 2 C. 𝑦 = 2𝑥 + 1 D. 𝑦 = −𝑥 + 1 Câu 33 . Đồ thị hàm số 𝑦 = 2𝑥 − 1 là hình nào dưới đây ? D. 𝑚 = ±7 Câu 34 . Đồ thị ở hình vẽ bên là của hàm số nào dưới đây ? A.𝑦 = |𝑥| C. 𝑦 = 1 − |𝑥| B. 𝑦 = |𝑥| + 1 D. 𝑦 = |𝑥| − 1 Câu 35. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm AB, AC. Hỏi cặp véc tơ nào sau đây cùng hướng ? ⃗⃗⃗⃗⃗ , ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ , ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ , 𝐶𝐴 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ A.𝐴𝐵 𝑀𝐵 B. ⃗⃗⃗⃗⃗ 𝐶𝐵, 𝑀𝑁 C. 𝑀𝐴 𝑀𝐵 D. 𝐴𝑁 Câu 36. Gọi O là giao điểm của hai đường chéo AC, BD của hình bình hành ABCD. Đẳng thức nào sau đây sai ? ⃗⃗⃗⃗⃗ = 𝐷𝑂 ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = 𝐷𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = 𝑂𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = 𝐷𝐴 ⃗⃗⃗⃗⃗ A.𝑂𝐵 B. 𝐴𝐵 C. 𝑂𝐴 D. 𝐶𝐵 Câu 37. Cho tam giác ABC. Có thể xác định được bao nhiêu véc tơ ( khác véc tơ không ) có điểm đầu và điểm cuối là các đỉnh A, B, C ? A.3 B.4 C.5 Câu 38. Hai véc tơ được gọi là bằng nhau khi và chỉ khi : D.6 A.Giá của chúng trùng nhau và độ dài của chúng bằng nhau. B.Chúng trùng với một trong các cặp cạnh đối của một hình bình hành. C.Chúng trùng với một trong các cặp cạnh của một tam giác đều. D.Chúng cùng hướng và độ dài của chúng bằng nhau. Câu 39. Cho tam giác đều ABC,cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng ? ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ = 𝑀𝐶 A.𝑀𝐵 ⃗⃗⃗⃗⃗⃗ = 𝑎 C. 𝐴𝑀 ⃗⃗⃗⃗⃗⃗ = 𝑎√3 ⃗⃗⃗⃗⃗⃗ | = 𝑎√3 B. 𝐴𝑀 D. |𝐴𝑀 2 2 Câu 40. Cho điểm B nằm giữa A và C sao cho 𝐴𝐵 = 2𝑎, 𝐴𝐶 = 6𝑎. Đẳng thức nào dưới đây đúng ? ⃗⃗⃗⃗⃗ = −2 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ A.𝐵𝐶 𝐴𝐵 B. ⃗⃗⃗⃗⃗ 𝐵𝐶 = 4 ⃗⃗⃗⃗⃗ 𝐴𝐵 C. ⃗⃗⃗⃗⃗ 𝐵𝐶 = 2𝐴𝐵 D. ⃗⃗⃗⃗⃗ 𝐵𝐶 = −𝐴𝐵 Câu 41. Cho hai véc tơ không cùng phương ⃗⃗⃗ 𝑎 𝑣à ⃗⃗⃗ 𝑏 . Hai véc tơ nào sau đây cùng phương ? −1 ⃗⃗⃗ A.−3𝑎 ⃗⃗⃗ + ⃗⃗⃗ 𝑏 𝑣à 𝑎 ⃗⃗⃗ + 6𝑏 2 1 ⃗⃗⃗ 𝑣à −1 𝑎 ⃗⃗⃗ C. ⃗⃗⃗ 𝑎 −𝑏 ⃗⃗⃗ + 𝑏 2 2 1 B.− 𝑎 ⃗⃗⃗ − ⃗⃗⃗ 𝑏 𝑣à 2𝑎 ⃗⃗⃗ + ⃗⃗⃗ 𝑏 2 1 ⃗⃗⃗ D. 𝑎 ⃗⃗⃗ + ⃗⃗⃗ 𝑏 𝑣à ⃗⃗⃗ 𝑎 − 2𝑏 2 ⃗⃗⃗ . Hai véc tơ nào sau đây cùng phương ? Câu 42. Cho hai véc tơ không cùng phương ⃗⃗⃗ 𝑎 𝑣à 𝑏 ⃗⃗⃗ 𝑣à 1 𝑎 ⃗⃗⃗ A.2𝑎 ⃗⃗⃗ + 3𝑏 ⃗⃗⃗ − 3𝑏 2 ⃗⃗⃗ 𝑣à 3𝑎 ⃗⃗⃗ C.−𝑎 ⃗⃗⃗ + 3𝑏 ⃗⃗⃗ − 9𝑏 3 3 ⃗⃗⃗ 𝑣à 2𝑎 B. ⃗⃗⃗ 𝑎 + 3𝑏 ⃗⃗⃗ − ⃗⃗⃗ 𝑏 5 5 3 1 ⃗⃗⃗ 𝑣à −1 𝑎 ⃗⃗⃗ D.2𝑎 ⃗⃗⃗ − 𝑏 ⃗⃗⃗ + 𝑏 2 3 4 ⃗⃗⃗⃗⃗ + 𝐴𝐶 ⃗⃗⃗⃗⃗ + 𝐴𝐷 ⃗⃗⃗⃗⃗ . Câu 43. Cho hình bình hành ABCD. Tìm véc tơ 𝐴𝐵 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ A.𝐴𝐶 B. 2𝐴𝐶 C. 3𝐴𝐶 D. 5 𝐴𝐶 Câu 44. Cho tam giác ABC. Phân tích véc tơ ⃗⃗⃗⃗⃗ 𝐴𝐵 𝑡ℎ𝑒𝑜 ⃗⃗⃗⃗⃗ 𝐴𝐶 𝑣à ⃗⃗⃗⃗⃗ 𝐵𝐶 bằng : ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ − 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ − 2 𝐵𝐶 ⃗⃗⃗⃗⃗ A.𝐴𝐶 B. 𝐴𝐶 C.−𝐴𝐶 D. 𝐴𝐶 ⃗⃗⃗⃗⃗⃗⃗ = −3 ⃗⃗⃗⃗⃗⃗ Câu 45. Trên đường thẳng MN, lấy điểm P sao cho 𝑀𝑁 𝑀𝑃 . Điểm P được xác định đúng trong hình vẽ nào sau đây ? B. A. C. D. ̂ = 600 . Đẳng thức nào sau đây đúng ? Câu 46. Cho hình thoi ABCD có 𝑐ạ𝑛ℎ 𝑎, 𝐵𝐴𝐷 ⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ | = 𝑎 ⃗⃗⃗⃗⃗ = 𝐵𝐷 ⃗⃗⃗⃗⃗⃗ B. |𝐵𝐷 A.𝐴𝐵 𝐴𝐷 C.𝐴𝐶 D. ⃗⃗⃗⃗⃗ 𝐵𝐶 = ⃗⃗⃗⃗⃗ 𝐷𝐴 Câu 47. Cho tam giác ABC có trực tâm H. Gọi điểm D đối xứng với B qua tâm O cuả đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng ? ⃗⃗⃗⃗⃗⃗ = 𝐶𝐷 ⃗⃗⃗⃗⃗⃗ 𝑣à ⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ = 𝐶𝐷 ⃗⃗⃗⃗⃗⃗ 𝑣à ⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ A.𝐻𝐴 𝐴𝐷 = 𝐶𝐻 B.𝐻𝐴 𝐴𝐷 = 𝐻𝐶 ⃗⃗⃗⃗⃗⃗⃗ = 𝐶𝐷 ⃗⃗⃗⃗⃗⃗ 𝑣à 𝐴𝐶 ⃗⃗⃗⃗⃗⃗ = 𝐶𝐻 ⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ = 𝐶𝐷 ⃗⃗⃗⃗⃗⃗ , 𝐴𝐷 ⃗⃗⃗⃗⃗⃗⃗ = 𝐻𝐶 ⃗⃗⃗⃗⃗⃗⃗ 𝑣à 𝑂𝐵 ⃗⃗⃗⃗⃗ = 𝑂𝐷 ⃗⃗⃗⃗⃗⃗ C.𝐻𝐴 D.𝐻𝐴 Câu 48. Cho tam giác ABC có trọng tâm G. Khẳng định nào sau đây đúng ? ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗ A.𝐴𝐵 𝐴𝐶 ⃗⃗⃗⃗⃗ | + |𝐺𝐶 ⃗⃗⃗⃗⃗ | = 0 B.| ⃗⃗⃗⃗⃗ 𝐺𝐴| + |𝐺𝐵 ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ | = ⃗⃗⃗⃗⃗ C.|𝐴𝐵 𝐴𝐶 D.| ⃗⃗⃗⃗⃗ 𝐺𝐴 + ⃗⃗⃗⃗⃗ 𝐺𝐵 + ⃗⃗⃗⃗⃗ 𝐺𝐶 | = 0 ⃗⃗⃗⃗⃗⃗ + ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ = ⃗0. Tìm vị trí của Câu 49. Cho tam giác ABC có điểm M thỏa mãn điều kiện 𝑀𝐴 𝑀𝐵 + 𝑀𝐶 điểm M ? A.M là đỉnh thứ tư của hình bình hành ACBM B. M là trung điểm AB C.M trùng C D.M là trọng tâm tam giác ABC. ⃗⃗⃗⃗⃗ − 𝐵𝐷 ⃗⃗⃗⃗⃗⃗ |. Câu 50. Cho hình thoi ABCD có 𝐴𝐶 = 2𝑎, 𝐵𝐷 = 𝑎. 𝑇í𝑛ℎ |𝐴𝐶 A. 3𝑎 B. 𝑎√3 C. 𝑎√5 D. 5𝑎 II-PHẦN BÀI TẬP TỰ LUẬN : Bài 1. Cho A = {x, x là ước nguyên dương của 12} ; B = {𝑥 ∈ 𝑁, 𝑥 < 5} ; C = {1 ; 2; 3} và D = {𝑥 ∈ 𝑁, (𝑥 + 1)(𝑥 − 2)(𝑥 − 4) = 0}. 1)Tìm tất cả các tập hợp X sao cho 𝐷 ⊂ 𝑋 ⊂ 𝐴 2)Tìm tất cả các tập hợp Y sao cho 𝐶 ⊂ 𝑌 ⊂ 𝐵. Bài 2. Tìm 𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵 , 𝐴𝐵 , 𝐵𝐴 với : 1)𝐴 = {𝑥 ∈ 𝑅, 2𝑥 2 − 3𝑥 + 1 = 0}, 𝐵 = {𝑥 ∈ 𝑅, |2𝑥 − 1| = 0} 2) 𝐴 = {𝑥 ∈ 𝑍, 𝑥 2 < 4}, 𝐵 = {𝑥 ∈ 𝑍, (5𝑥 − 3𝑥 2 )(𝑥 2 − 2𝑥 − 3) = 0} 3) 𝐴 = {𝑥 ∈ 𝑁, (𝑥 2 − 9)(𝑥 2 − 5𝑥 − 6) = 0}, 𝐵 = {𝑥 ∈ 𝑁, 𝑥 𝑙à 𝑠ố 𝑛𝑔𝑢𝑦ê𝑛 𝑡ố, 𝑥 ≤ 5}. Bài 3. Cho 𝐴 = {𝑥 ∈ 𝑅, 1 < 𝑥 < 5}, 𝐵 = {𝑥 ∈ 𝑅, 4 ≤ 𝑥 ≤ 7} , 𝐶 = {𝑥 ∈ 𝑅, 2 ≤ 𝑥 < 6}. 1)Tìm 𝐴 ∩ 𝐵 , 𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶, 𝐴 ∪ 𝐶 , 𝐴 ∖ (𝐵⋃𝐶). 2)Gọi D = {𝑥 ∈ 𝑅, 𝑎 ≤ 𝑥 ≤ 𝑏}. Tìm a,b để 𝐷 ⊂ (𝐴 ∩ 𝐵 ∩ 𝐶). Bài 4. Tìm tập xác định của hàm số : 1)𝑦 = √𝑥 − 1 + 1 2) 𝑦 = √4−𝑥 (𝑥−3)√𝑥−1 3) 𝑦 = 𝑥 √𝑥−9−√7−2𝑥 3 4) 𝑦 = |𝑥+1|−|𝑥+2| √𝑥 2 −9 Bài 5. Xét tính chẵn lẻ của hàm số : 1)𝑦 = 𝑥 4 − 2𝑥 2 + 3 2) 𝑦 = 𝑥 3 − 𝑥 3) 𝑦 = 𝑥 2 + |𝑥| 2 4)𝑦 = √5 + 2𝑥 + √5 − 2𝑥 5)𝑦 = |1 − 2𝑥| − |2𝑥 + 1| 4)𝑦 = 𝑥 +1 |𝑥−1| Bài 6. Cho hàm số 𝑦 = 𝑓(𝑥) = (𝑚 − 1)𝑥 − 𝑚 + 3 (𝑐ó đồ 𝑡ℎị 𝑑). 1)Tìm m để hàm số đồng biến trên R. 2)Tìm m để d vuông góc với đường thẳng y = - x + 2022. 3)Tìm m để d cắt hai trục Ox, Oy lần lượt tại A, B sao cho 𝑆△𝐴𝐵𝐶 = 4. 4)Tìm m để 𝑓(𝑥) > 0∀𝑥 ∈ [−1; 3]. Bài 7. Cho hình bình hành ABCD tâm O. Điểm M tùy ý. Chứng minh rằng: ⃗⃗⃗⃗⃗ − 𝐷𝐵 ⃗⃗⃗⃗⃗ + ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗⃗ 1)𝐷𝐴 𝑂𝐷 − ⃗⃗⃗⃗⃗ 𝑂𝐶 4) ⃗⃗⃗⃗⃗ 𝐴𝐵 + 𝐴𝐶 𝐴𝐷 = 2𝐴𝐶 ⃗⃗⃗⃗⃗ − 𝐷𝐵 ⃗⃗⃗⃗⃗ = 0 ⃗⃗⃗ ⃗⃗⃗⃗⃗ + 𝑂𝐵 ⃗⃗⃗⃗⃗ + 𝑂𝐶 ⃗⃗⃗⃗⃗ + 𝑂𝐷 ⃗⃗⃗⃗⃗⃗ = 0 ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ + 𝐷𝐶 2) 𝐷𝐴 5) 𝑂𝐴 ⃗⃗⃗⃗⃗⃗ + 𝑀𝐶 ⃗⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ + ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ + ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ 3) 𝑀𝐴 𝑀𝐵 + ⃗⃗⃗⃗⃗⃗ 𝑀𝐷 6) 𝑀𝐴 𝑀𝐵 + 𝑀𝐶 𝑀𝐷 = 4𝑀𝑂 ⃗⃗⃗⃗⃗⃗ ; ⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ cùng tác động vào một vật đặt tại điểm M. Bài 8. Cho ba lực ⃗⃗⃗ 𝐹1 = 𝑀𝐴 𝐹2 = ⃗⃗⃗⃗⃗⃗ 𝑀𝐵, ⃗⃗⃗⃗ 𝐹3 = 𝑀𝐶 ̂ = 600 . Tìm cường độ của lực ⃗⃗⃗⃗ Cường độ của lực ⃗⃗⃗ 𝐹1 𝑣à ⃗⃗⃗⃗ 𝐹2 cùng bằng 100N, góc 𝐴𝑀𝐵 𝐹3 biết rằng vật đặt tại điểm M đứng yên. ̂ = 600 . Tính độ dài véc tơ : Bài 9. Cho hình thoi ABCD canh bằng a, tâm O, góc 𝐵𝐴𝐷 ⃗⃗⃗⃗⃗ + 𝐴𝐷 ⃗⃗⃗⃗⃗ |, |𝐵𝐴 ⃗⃗⃗⃗⃗ − 𝐵𝐶 ⃗⃗⃗⃗⃗ |, |𝑂𝐵 ⃗⃗⃗⃗⃗ − 𝐷𝐶 ⃗⃗⃗⃗⃗ |. |𝐴𝐵 Bài 10. Cho tứ giác ABCD. Điểm M, N lần lượt là trung điểm AB, CD. ⃗⃗⃗⃗⃗ + 𝐵𝐷 ⃗⃗⃗⃗⃗⃗⃗ = 𝐴𝐶 ⃗⃗⃗⃗⃗⃗ 1)CMR: ⃗⃗⃗⃗⃗ 𝐴𝐷 + ⃗⃗⃗⃗⃗ 𝐵𝐶 = 2𝑀𝑁 2)Tìm vị trí điểm I sao cho ⃗⃗⃗⃗ 𝐼𝐴 + ⃗⃗⃗⃗ 𝐼𝐵 + ⃗⃗⃗⃗ 𝐼𝐶 + ⃗⃗⃗⃗ 𝐼𝐷 = ⃗⃗⃗ 0 ⃗⃗⃗⃗⃗ + ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = 4𝑃𝐼 ⃗⃗⃗⃗ . 3)CMR: ∀ 𝑃 𝑏ấ𝑡 𝑘ì, ⃗⃗⃗⃗⃗ 𝑃𝐴 + 𝑃𝐵 𝑃𝐶 + 𝑃𝐷
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top