Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao – Phạm Minh Tuấn

Giới thiệu Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao – Phạm Minh Tuấn

Học toán online.vn gửi đến các em học sinh và bạn đọc Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao – Phạm Minh Tuấn CHƯƠNG SỐ PHỨC.

Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao – Phạm Minh Tuấn

Tài liệu môn Toán 12 và hướng dẫn giải chi tiết các đề thi từ cơ bản đến vận dụng cao sẽ luôn được cập thường xuyên từ hoctoanonline.vn , các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất.

Tài liệu Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao – Phạm Minh Tuấn

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Nguyên hàm, tích phân và ứng dụng tại đây nhé.

Text Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao – Phạm Minh Tuấn
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Bài 1: Cho số phức z thỏa mãn z  1 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  z  1  z2  z  1 . Tính giá trị của M.n A. 13 3 4 B. 39 4 C. 3 3 D. 13 4  Cách 1: Re( z ) là phần thực của số phức z, Im(z) là phần ảo của số phức z, z  1  z.z  1  Đặt t  z  1 , ta có: 0  z  1  z  1  z  1  2  t  0; 2     t 2  1  z  1  z  1  z.z  z  z  2  2Re( z)  Re( z)  t2  2 2  z2  z  1  z2  z  z.z  z z  1  z  t 2  3  Xét hàm số: f  t   t  t 2  3 , t  0; 2  . Xét 2 TH:  Maxf  t   13 3 13 ; Minf  t   3  M .n  4 4  Cách 2:  z  r  cos x  i sin x   a  bi 2   z.z  z  1  Do z  1   r  a 2  b 2  1   P  2  2cos x  2cos x  1 , đặt t  cos x  1;1  f  t   2  2t  2t  1  1  TH1: t   1;   2 maxf  t   f 1  3 1  f ‘t   20 1 2  2t minf  t   f    3 2  1   TH1: t   ;1 2  f ‘t   1 7  2  0  t    maxf  t   8 2  2t  Maxf  t    7  13 f     8 4 13 3 13 ; Minf  t   3  M .n  4 4 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Bài 2: Cho số phức z thỏa mãn z  3  4i  5 . Gọi M và m là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  z  2  z  i . Tính module số phức w  M  mi . 2 A. w  2 314 2 B. w  1258 C. w  3 137 D. w  2 309  Cách 1:  P  4x  2 y  3  y  P  4x  3 2  z  3  4i  5   x  3   y  4  2  P  4x  3   5   x  3    4  5  f  x 2   2 2 2  f ‘  x   8  x  3  8  P  4 x  11  0  x  0,2P  1,6  y  0,1P  1,7  P  33  P  13  Thay vào f  x  ta được:  0, 2 P  1,6  3   0,1P  1,7  4   5  0   2 2  Cách 2:  z  3  4i  5   x  3   y  4   5:  C  2 2  () : 4 x  2 y  3  P  0  Tìm P sao cho đường thẳng  và đường tròn  C  có điểm chung  d  I ;    R  23  P  10  13  P  33  Vậy MaxP  33 ; MinP  13  w  33  13i  w  1258 Bài 3: Cho số phức z thỏa mãn z  1 . Tìm giá trị lớn nhất của biểu thức P  z  1  2 z  1 . A. Pmax  2 5 B. Pmax  2 10  Giải: Theo BĐT Bunhiacopxki:  P  z 1  2 z 1  1 2  22  z  1 C. Pmax  3 5 2  z 1 2   10  z  1  2 2 D. Pmax  3 2 5 Bài 4: Cho số phức z  x  yi  x, y  R  thỏa mãn z  2  4i  z  2i và m  min z . Tính module số phức w  m   x  y  i . A. w  2 3 B. w  3 2 C. w  5 D. w  2 6 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  Cách 1:  z  2  4i  z  2i  x  y  4  z  x y  2 2  x  y 2 2 42 2 2 2  x  y  4 x  2   w  2 2  4i  w  2 6 x  y y  2  min z  2 2 , Dấu “=” xảy ra khi  Chú ý: Với mọi x, y là số thực ta có: x 2  y 2   x  y 2 2 Dấu “=” xảy ra khi x  y  Cách 2:  z  2  4i  z  2i  y  4  x  z  x2  y 2  x2   4  x   2  x  2  8  2 2 2 2 x  y  4 x  2   w  2 2  4i  w  2 6 x  2 y  2  min z  2 2 . Dấu “=” xảy ra khi  Bài 5: Cho số phức z  x  yi  x, y  R  thỏa mãn z  i  1  z  2i . Tìm môđun nhỏ nhất của z. A. min z  2 B. min z  1 C. min z  0 D. min z  1 2  Cách 1:  z  i  1  z  2i  x  y  1  x y 2 2  x  y  2  z  x2  y 2  2  1 2 1 1  2 2 Chú ý: Với mọi x, y là số thực ta có: x  y 2 2  x  y  2 2  Cách 2: —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  z  i  1  z  2i  y  x  1  z  x  y  x   x  1 2 2 2 2 2 1 1 1 1   2 x      2 2 2 2  1 2  Vậy min z  Bài 6: Cho số phức z thỏa mãn z  1 . Gọi M và m là giá trị lớn nhất và nhỏ nhất của biểu thức P  z 3  3z  z  z  z . Tính M  m A. 7 4 B. 13 4 C. 3 4 D. 15 4 Sáng tác: Phạm Minh Tuấn  Cách 1:  Ta có z  1  z.z  1 2     Đặt t  z  z 0;2  t 2  z  z z  z  z 2  2 z.z  z  2  z 2  z 2 2 2  z 3  3z  z  z z 2  3  z  t 2  1  t 2  1  1 2 3 3  P  t2  t 1 t      2 4 4  Vậy minP   M n 3 ; maxP  3 khi t  2 4 15 4  Cách 2: Cách này của bạn Trịnh Văn Thoại  P  z  3z  z  z  z  3 z 3  3z  z z 2   z  z  z2  3  z  z  z  z  z  2 1  z  z 3 4 2  P  z  z  1  z  z  . Đến đây các bạn tự tìm max nhé Bài 7: Cho các số phức a, b, c, z thỏa az 2  bz  c  0  a  0  . Gọi z1 và z2 lần lượt là hai nghiệm của phương trình bậc hai đã cho. Tính giá trị của biểu thức P  z1  z2  z1  z2  2  z1  z1  2 2 2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– c a A. P  2 B. P  C. P  4 c a c a 1 c 2 a D. P  .  Giải:  Ta có : z1  z2  z1  z2   z1  z2   z1  z2    z1  z2   z1  z2   2 z1  2 z2 2 2 2 2  Khi đó P  4 z1 z2 c a c a  Ta lại có: z1 z2   P  4 z1 z2  4 Bài 8: Cho 3 số phức z1 , z2 , z3 thỏa mãn z1  z2  z3  0 và z1  z2  z3  1 . Mệnh đề nào dưới đây đúng? A. z1  z2  z2  z3  z3  z1 là số thuần ảo 2 2 2 B. z1  z2  z2  z3  z3  z1 là số nguyên tố 2 2 2 C. z1  z2  z2  z3  z3  z1 là số thực âm 2 2 2 D. z1  z2  z2  z3  z3  z1 là số 1 2 2 2  Chứng minh công thức:  z1  z2  z2  z3  z3  z1  z1  z2  z3  z1  z2  z3 2 2 2 2 2 2 2 2  Ta có: z  z.z và z1  z2  …  zn  z1  z2  …  zn . Áp dụng tính chất này ta có vế trái:        z1  z2  z1  z2   z2  z3  z2  z3   z3  z1  z3  z1   z1 z1  z2 z2  z3 z3  z1 z1  z2 z2  z3 z3  z1 z2  z2 z1  z2 z3  z3 z2  z3 z1  z1 z3 2 2 2       z1  z2  z3  z1 z1  z2  z3  z2 z1  z2  z3  z3 z1  z2  z3   z1  z2  z3   z1  z2  z3  z1  z2  z3 2 2 2 2 2 2  z1  z2  z3  z1  z2  z3   2  Áp dụng công thức đã chứng minh suy ra: z1  z2  z2  z3  z3  z1  3 là số 2 2 2 nguyến số —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Bài 9: Có bao nhiêu số phức z thỏa mãn hai điều kiện z  1 và A.5 B. 6 C. 7 z z  z 1 ? z D. 8  Giải:  Ta có: z  1  z.z 2  Đặt z  cos x  i sin x, x  0;2   z2  cos 2x  i sin 2x  1  2 cos 2 x  2 z z z2  z  1  1  2 cos 2 x  1   z z z. z cos 2 x   1  2  Giải 2 phương trình lượng giác trên với x  0;2  nên ta chọn được các giá trị   5 7 11  2 4 5  x ; ; ; ; ; ; ;  6 6 6 6 3 3 3 3   Vậy có 8 số phức thỏa 2 điều kiện đề cho Bài 10: Cho các số phức z1 , z2 , z3 thỏa mãn đồng thời hai điều kiện z1  z2  z3  1999 và z1  z2  z3  0 . Tính P  z1 z2  z2 z3  z3 z1 . z1  z2  z3 A. P  1999 P  999,5 B. P  19992  Giải P  5997  z1 z2  z2 z3  z3 z1   z1 .z2  z2 .z3  z3 .z1     z1  z2  z3  z1  z2  z3     P2    1999 2 z   1 z1   1999 2   Mặc khác: z1  z2  z3  1999  z1 z1  z2 z2  z3 z3  1999 2  z2  z2   1999 2  z3  z3  —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  1999 2 1999 2 1999 2 1999 2 1999 2 1999 2   . . .   z1 z2  z2 z3  z3 z1   z1 z2 z2 z3 z3 z1 2  Suy ra P    2 2 2 1999 1999 1999  z1  z2  z3    z1 z2 z3      1999 2     P  1999  Tổng quát: z1  z2  z3  k  z1z2  z2 z3  z3 z1  k z1  z2  z3 Bài 11: Cho số phức z thỏa mãn 3  3 2i 1  2 2i z  1  2i  3 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  z  3  3i . Tính M.m A) M.n  25 B) M.n  20 C) M.n  24 D) M.n  30  Dạng tổng quát: Cho số phức z thỏa mãn z1z  z2  r . Tính Min, Max của z  z3 . Ta có Max  z2 z r r  z3  ; Min   2  z3 z1 z1 z1 z1  Áp dụng Công thức trên với z1  3  3 2i 1  2 2i ; z2  1  2i , z 3  3  3i; r  3 ta được Max  6; Min  4 Bài tập áp dụng: 1) Cho số phức z thỏa mãn z  2  2i  1 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z . Tính M.m A) M.n  7 B) M.n  5 2) Cho số phức z thỏa mãn C) M.n  2 D) M.n  4 1  2i z  2  1 . Gọi M và m lần lượt là giá trị lớn nhất 1 i và giá trị nhỏ nhất của z  i . Tính M.m A) M.n  1 5 B) M.n  1 3 C) M.n  1 10 D) M.n  1 4 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– z  i 4 n1  i 4 n với n i2 3) Cho số phức z thỏa mãn . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z  3  i . Tính M.m A) M.n  20 B) M.n  15 C) M.n  24 D) M.n  30 Bài 12: Cho số phức z thỏa mãn z  1  z  1  4 . Gọi m  min z và M  max z , khi đó M.n bằng: B. 2 3 A. 2 C. 2 3 3 3  Giải:  Dạng Tổng quát: z1z  z2  z1z  z2  k với z1  a  bi; z2  c  di; z  x  yi  Ta có: Min z  k 2  4 z2 2 k 2 z1 và Max z  2 z1  Chứng minh công thức:  Ta có: k  z1z  z2  z1z  z2  z1z  z2  z1z  z2  2z1z  z  Max z  k . Suy ra 2 z1 k 2 z1  Mặc khác:  ax  by  c    ay  bx  d  2  z1z  z2  z1z  z2  k  2   ax  by  c    ay  bx  d  2  Áp dụng BĐT Bunhiacopxki ta có: k  1.    ax  by  c    ay  bx  d  2 2  1.  ax  by  c    ay  bx  d  2 2 1  1   ax  by  c    ay  bx  d    ax  by  c    ay  bx  d   4  a  b  x  y   4  c  d  2 2 2 2 2 2 2 2 2 2 2 2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com 2 k Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  k 2  4 c 2  d2  Suy ra z  x  y  2 2  4 a2  b2   k 2  4 z2 2 2 z1  42  4  3 m  2  ADCT trên ta có: z1  1; z2  1; k  4   M  4  2  2 Bài 13: Cho số phức z thỏa mãn iz  2 2  iz   4 . Gọi m  min z và 1 i 1 i M  max z , khi đó M.n bằng: B. 2 2 A. 2  ADCT Câu 12 ta có: z1  i; z2  C. 2 3  2 m  2 ;k  4  1 i  M  2 Bài 14: Cho các số phức z1 , z2 , z3 thỏa mãn z1 z2 z3  2 2 D. 1 1 3  i . Tính giá trị nhỏ nhất của 2 2 2 biểu thức P  z1  z2  z3 . A. Pmin  1 C. Pmin  3 1 3 D. Pmin  2 B. Pmin   Giải: 2 2  Áp dụng BĐT AM-GM ta có: P  3 3 z1 . z2 . z3  Mặc Khác: z1 z2 z3  2 1 3  i  z1z2 z3  1  z1 z2 z3  1 2 2  Suy ra P  3 . Dấu “=” xảy ra khi z1  z2  z3  1 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– z3 1 z  1  2i Bài 15: Cho số phức z  x  yi với x, y là các số thực không âm thỏa mãn 2 2 và biểu thức P  z 2  z  i  z 2  z   z 1  i   z  1  i  . Giá trị lớn nhất và giá trị nhỏ    nhất của P lần lượt là: A. 0 và 1 C. 3 và 0 B. 3 và 1 D. 2 và 0  Giải:  z3  1  z  3  z  1  2i  x  y  1 z  1  2i 2  xy 1  P  16x y  8xy , Đặt t  xy  0  t      2  4 2 2  1  P  16t 2  8t , t  0;   MaxP  0; MinP  1  4 Bài 16: Cho các số phức z thỏa mãn z  1 . Tính giá trị nhỏ nhất của biểu thức P  1  z  1  z2  1  z3 . A. Pmin  1 C. Pmin  3 B. Pmin  4 D. Pmin  2  Giải:  Ta có: z  1  z  1    P  1  z  1  z2  1  z3  1  z  z 1  z 2  1  z 3  1  z  z 1  z 2  1  z 3  2 Bài 17: Cho số phức z thỏa mãn A. max z  6z  i  1 . Tìm giá trị lớn nhất của z . 2  3iz 1 2 C. max z  1 3 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– B. max z  3 4 D. max z  1  Giải: 2 2 6z  i  1  6 z  i  2  3iz  6 z  i  2  3iz 2  3iz  6z  i   6z  i    2  3iz   2  3iz    6 z  i   6 z  i    2  3iz   2  3iz   z.z  2 1 1 1  z   z 9 9 3 Bài 18: Cho z  a  bi ,  a, b   thỏa   z 2  4  2 z và P  8 b2  a2  12 . Mệnh đề nào sau đây đúng?   P   z  4 2 A. P  z  2 B. 2 2     C. P  z  2 2 D. P  z  4 2 2  Giải:      z 2  4  2 z  a2  b2  4   2ab   4 a2  b2  0 2 2  Chuẩn hóa b  0  a4  4a2  16  0  a  1  i 3  z  1  i 3  P  4 2 2    Thử đáp án: – ĐÁP ÁN A: P   1  i 3  2   4  Nhận   Bài 19: Cho số phức z thỏa mãn z  2  3i  1 . Gọi M  max z  1  i , m  min z  1  i .   Tính giá trị của biểu thức M 2  n2 . A. M 2  m2  28 C. M 2  m2  26 B. M 2  m2  24 D. M 2  m2  20  Giải:  z  2  3i  1   x  2    y  3   1 (1) 2 2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  Đặt P  z  1  i   x  1   y  1  P 2 (2) với P  0 2  Lấy (1)-(2) ta được: y  2 P 2  10  6 x . Thay vào (1) : 4 2  P 2  10  6 x    x  2    3   1  52 x 2  40  12 P 2 x  P 4  4 P 2  52  0 (*) 4    2     Để PT (*) có nghiệm thì:    40  12P 2  2    4.52. P 4  4P 2  52  0  14  2 13  P  14  2 13  Vậy M  14  2 13 , m  14  2 13  M 2  m2  28 Bài 20: Cho số thức z  * thỏa mãn z 3  1 1  2 và M  max z  . Khẳng định nào sau 3 z z đây đúng? A. 1  M  2 B. 1  M  C. 2  M  5 2 7 2 D. M 3  M 2  M  3  Giải: 3 3    1 1 1 1  1 1   z    z3  3  3  z    z3  3   z    3  z   z z z z z z     3 3     1 1 1 1 1  z  3   z    3 z     z    3 z    2 z z z z z     3 3 3  1  1 1 1 3 z  Mặt khác:  z    3  z    z  z z z z   3  Suy ra: 1 1 1 z  3 z   2 , đặt t  z   0 , ta được: z z z  t 3  3t  2  0   t  2  t  1  0  t  2  z  2 1 2 M 2 z —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Bài 21: Cho số phức z thỏa mãn  z  3  i 1  i   1  i  2017 . Khi đó số thức w  z  1  i có phần ảo bằng: A. ( z)  21008  1 C. ( z)  21008 B. ( z)  21008  3 D. ( z)  21008  2  Giải:   z  3  i 1  i   1  i  2017   z  3  i 1  i 1  i   1  i  2018 1009 1009  1  i  2   2i      3i   3  i  21008 i  3  i  z 2 1  i 1  i       w  21008 i  3  i  1  i  4  21008  2 i  ( z)  21008  2   Bài 22: Cho số phức z thỏa mãn 1  5i z  2 42  3i  15 . Mệnh đề nào dưới đây z đúng: 1  z 2 2 3 B.  z 3 2  Giải: A.  C. 5  z 4 2 D. 3  z  5 1  5i  z  2 z42  3i  15 2 42   1  5i  z  3i  1  5i   z 2 42   1  5i  z  3i    1 z 2  6. z  3   5 i z  3i  2 42 z  2 2 2 42  6 z  3 . z  4.42  0  z  2 z Bài 23: Cho ba số phức z , z1 , z2 thỏa mãn 2 z  i  2  iz và z1  z2  1 . Tính giá trị của biểu thức P  z1  z2 . —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– A. P  3 2 C. P  2 2 2 D. P  B. P  3  Giải:  Đặt z  x  yi , 2z  i  2  iz  x2  y 2  1  Gọi A, B là hai điểm biểu diễn z1 , z2 .  Ta có z1  z2  OA  OB  AB  1  Suy ra AB  OA  OB hay tam giác OAB đều.  P  z1  z2  OA  OB  2OM  2. 3  3 2 Bài 24: Cho ba số phức z1 , z2 , z3 thỏa mãn z1  z2  z3  1 và z1  z2  z3  0 . Tính giá trị của biểu thức P  z12  z22  z32 . A. P  1 C. P  1 B. P  0 D. P  1  i  Giải: Chuẩn hóa z1  1 3 1 3  i , z2   i , z3  1 Suy ra P  0 2 2 2 2 Bài 25: Cho hai số phức z1 , z2 thỏa mãn z1  z2  8  6i và z1  z2  2 . Tính giá trị lớn nhất của biểu thức P  z1  z2 . A. Pmax  5  3 5 C. Pmax  4 6 B. Pmax  2 26 D. Pmax  34  3 2  Giải:  Ta có: z1  z2  8  6i  z1  z2  10 2 2  2  z1  z2  z1  z2  2 z1  z2 2   52  z 1 2  z2 2 z  1  z2 2  2  z1  z2  2.52  2 26 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Bài 26. Cho z1 , z2 , z3 là các số phức thỏa mãn z1  z2  z3  1 và z1  z2  z3  0 . Khẳng định nào dưới đây là sai. A. z13  z23  z33  z13  z23  z33 B. z13  z23  z33  z13  z23  z33 C. z13  z23  z33  z13  z23  z33 D. z13  z23  z33  z13  z23  z33  Giải: Chuẩn hóa z1  1 3 1 3  i , z2   i , z3  1 Suy ra đáp áp D 2 2 2 2 Bài 27: Cho z1 , z2 , z3 là các số phức thoả mãn z1  z2  z3  1 . Khẳng định nào sau đây là đúng? A. z1  z2  z3  z1z2  z2 z3  z3 z1 B. z1  z2  z3  z1z2  z2 z3  z3 z1 C. z1  z2  z3  z1z2  z2 z3  z3 z1 D. z1  z2  z3  z1z2  z2 z3  z3 z1  Giải: Chuẩn hóa z1  1 3 1 3  i , z2   i , z3  1 Suy ra đáp áp A 2 2 2 2 Bài 28: Cho z1 , z2 , z3 là các số phức thoả mãn z1  z2  z3  1 và z1  z2  z3  1 . Biểu thức  P  z12n1  z22n1  z32n 1 , n    nhận giá trị nào sao đây? A. 1 B. 2 C. 4 D. 3  Giải: Chuẩn hóa n  1, z1  1, z2  i , z3  i Suy ra đáp áp A Bài 29: Cho ba số phức z1 , z2 , z3 thỏa mãn z1  z2  z3  1 . Tính giá trị nhỏ nhất của 1 1 1   . z1  z2 z1  z3 z2  z1 z2  z3 z3  z1 z3  z2 biểu thức P  A. Pmin  3 4 1 2 5  2 C. Pmin  B. Pmin  1 D. Pmin  Giải:       z1  z2  z2  z3  z3  z1   z1  z2  z1  z2   z2  z3  z2  z3   z3  z1  z3  z1 2 2 2  —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–   9   z1  z2  z3  z1  z2  z3  9  z1  z2  z3  2  Theo BĐT Cauchy- Schwarz: 9 9 9   2 2 2 z1  z2 z1  z3  z2  z1 z2  z3  z2  z1 z2  z3 z1  z2  z2  z3  z3  z1 9  z1  z2  z3 P  Do đó: P  9 2  1 (do z1  z2  z3  0 ) 9 Bài 30: Cho ba số phức z thỏa mãn z  1 . Tìm giá trị lớn nhất của biểu thức P  A. Pmax  1 B. Pmax  C. Pmax  1 2 2z  i : 2  iz 3 4 D. Pmax  2 z  1  Giải: Chuẩn hóa z  1   z  0  z  1 P  2i  1 do đó loại B, C 2i  z0P i 1 do đó loại D, chọn đáp án A  2 2 Bài 31: Cho 3 số phức z1 , z2 , z3 thỏa mãn z1  z2  z3  0 và z1  z2  z3  2 2 . Mệnh đề nào 3 dưới đây đúng? 2 2 3 8  3 A. z1  z2  z2  z3  z3  z1  2 2 B. z1  z2  z2  z3  z3  z1 2 2 2 2 C. z1  z2  z2  z3  z3  z1  2 2 2 2 2 D. z1  z2  z2  z3  z3  z1  1 2 2 2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com 2 Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  Giải: z1  z2  z2  z3  z3  z1  z1  z2  z3  z1  z2  z3  2 2 2 2 2 2 2 8 3 Bài 32: Gọi S là tập hợp các số phức z thỏa mãn z  i  3 và z  2  2i  5 . Kí hiệu z1 , z2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P  z2  2z1 . A. P  2 6 C. P  33 B. P  3 2 D. P  8  Giải:  3  z  i  z 1 z  2 2 2   x   y  1  9 o Dấu “=” xảy ra khi:   z1  2i 2 2 x  y  4    z  2 2  z  2  2i  5  z  5  2 2  x  2 2   y  2 2  25 45 2 45 2   o Dấu “=” xảy ra khi:   z2   i   2 2 2 2 x  y  33  20 2      P 45 2 45 2    i  4i  33   2 2   Bài 33: Gọi z là số phức có phần thực lớn hơn 1 và thỏa mãn z  1  i  2z  z  5  3i sao cho biểu thức P  z  2  2i đạt giá trị nhỏ nhất. Tìm phần thực của số phức z đó. A. ( z )  8 7 2 C. ( z )  4 6 2 B. ( z )  8 2 2 D. ( z )  12  2 2  Giải:  z  1  i  2z  z  5  3i  y   x  2   P  x  2   y  2 2 2 2 2 2  3 7 7  y   y  2   y     2 4 4  —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  3 4 6 3 y  2 z  i  Dấu “=” xảy ra khi:  2 2 2 y   x  2  Bài 34: Cho số phức z thỏa mãn z  1 . Tìm giá trị lớn nhất của biểu thức P  z 3  z  2 . A. Pmax  11 2 13 2 C. Pmax  B. Pmax  2 3 D. Pmax  3 5  Giải: Câu 35: Cho phương trình: z3  az2  bz  c  0 ,  a, b, c   . Nếu z 1  1  i , z2  2 là hai nghiệm của phương trình thì a  b  c bằng: A. 2 B. 1 C. 0 D. 1 Bài 36: Cho số phức z thỏa mãn 11z10  10iz9  10iz  11  0 .Tính z . z  A. 1 2 B. z  3 4 C. Pmax  1 D. Pmax  2 Bài 37: Cho phương trình: z4  az3  bz2  cz  d  0 ,  a, b, c , d   có bốn nghiệm phức là z1 , z2 , z3 , z4 . Biết rằng z1z2  13  i , z3  z4  3  4i , khẳng định nào sau đây đúng? A. b  53 B. b  50 C. b  55 D. b  51 Bài 38: Cho số phức z thỏa mãn z1  z2  z3  1 và z1  z2 z3 ; z2  z3 z1 ; z3  z1z2 là các số thực. Tính  z1 z2 z3  2017 C. 1 A. 1 B. 2 . 2017 D. 22017   C. 5  z 4 2 Bài 39: Cho số phức z thỏa mãn đồng thời z  z  2 và z  3z  2  i 3 z . Khẳng định nào sao đây đúng? A. 1  z 2 2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– B. 3  z 3 2 D. 3  z  5 4  z 1  Bài 40: Cho z1 , z2 , z3 , z4 là nghiệm phức của phương trình:    1 . Tính giá trị của  2z  i       biểu thức P  z12  1 z22  1 z32  1 z42  1 : 18 5 17 D. P  9 A. P  1 C. P  B. P  1 Bài 41: Cho số phức z thỏa mãn z  1 . Gọi M và m là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  z3  1  z 2  z  1 . Tính M  m . A. 2 B.7 Bài 42: Cho hai số phức z1 , z2 thỏa mãn P z1 z1  z2 z2 C.6 z1  z2 z1  z2  D. 5 1 . Tìm giá trị lớn nhất của biểu thức 2 . A. 2 B.0,75 C.0,5 D. 1 Bài 43: Trong mặt phẳng phức với gốc tọa độ O, cho hai điểm A, B (khác O) biểu diễn hai số phức z1 , z2 thỏa mãn z12  z22  z1z2 . Khẳng định nào sau đây đúng? A. OAB vuông cân tại A B. OAB đều C. OAB cân, không đều D. OAB cân tại A Bài 44: Cho ba số phức z1 , z2 , z3 thỏa mãn z1  z2  z3  2 và z1  z2  z3  0 . Tính giá 2 trị lớn nhất của biểu thức P  z1  z2  2 z2  z3  2 z3  z1 . —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– A. Pmax  7 2 3 C. Pmax  3 6 2 B. Pmax  4 5 5 D. Pmax  10 2 3  Giải: 2 2 2 2 2 2 2  z1  z2  z2  z3  z3  z1  z1  z2  z3  z1  z2  z3  3 2  Theo BĐT Bunhiacôpxki ta có: P  z1  z2  2 z2  z3  2 z3  z1  1  2 2  22  z  z 1 2 2 2  z2  z3  z3  z1 2   3 26 Bài 45: Cho số phức z thỏa mãn z  1 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  z 2  1  1  z . Tính P  M 2  n2 A. 12 C. 15 B. 20 D. 18 Bài 46: Cho bốn số phức a, b, c , z thỏa mãn az2  bz  c  0 và a  b  c  0 . Gọi M  max z , m  min z . Tính môđun của số phức w  M  mi . A. w  2 C. w  3 B. w  2 D. w  1 Bài 47: Cho số phức z thỏa mãn z  1  2 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  z  i  z  2  i . Tính môđun của số phức w  M  mi . A. w  2 6 C. w  3 5 B. w  4 2 D. w  4  Giải:  z  1  2   x  1  y 2  2 2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  P  x2   y  1   2  x   1  y   P  x2   y  1   2  x   1  y  2 2 2 2 2 2 vecto  x  2  x   y  1  1  y 2  bunhiacopxki 2 2 2 2 2.2  x  1  y 2  2   4     w  4  2 2i  2 6 Bài 48: Cho hai số phức z1 , z2 thỏa mãn z1  z2  3 3 4  i , z1  z2  3 và biểu thức 5 5 3 P  4 z1  4 z2  3 z1  3 z2  5 đạt giá trị nhỏ nhất . Tính z1  z2 . A. 1 B. C. 2 3 4 D. 3  Giải:  Ta có: z1  z2  1; 3  z1  z2  z1  z2 2 2  2  z1  z2  z1  z2  2 z1  z2  3  P  4 z1  z2 3 2 2 z 1 2  z2 2 z  1  z2  2 2  3  z1  z2  2   3 z  z   5   z  z   3 z  z   5 3 1 2 1 2 1 2 t  1  Xét hàm số: f  t   t 3  3t  5, t   3; 2  ; f ‘  t   3t 2  3  0     t  1  Do đó minf  t   3  minP  3  Dấu “=” xảy ra khi z1  z2  1 Bài 49: Cho số phức z thỏa mãn z  2 2 3  3 2 . Gọi M  max z và m  min z , tính z môđun của số phức w  M  mi . A. w  4 22 C. w  5 10 B. w  7 56 D. w  3 62 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————–  Giải: 3 z 3 2  z 4  z2  3 z 2 2  18  z 2   3 z2  3 z 2   18  z  3  z  z   6 z 2 4 z 2 2 9  18 2 z 6 z 9 z 2 2  18  12  3 15  z  12  3 15 Do đó: w  3 62 Bài 50: Cho số phức z thỏa mãn z 2  2z  5   z  1  2i  z  3i  1 . Tìm giá trị nhỏ nhất của biểu thức P  z  2  2i . A. Pmin  1 2 C. Pmin  2 D. Pmin  B. Pmin  1 3 2 Bài 51: Cho số phức z thỏa mãn z  2 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của của biểu thức P  A. zi . Tính giá trị của biểu thức M.n : z 1 4 C. 1 B. 2 D. 3 4 Bài 52: Cho số phức z thỏa mãn z 2  4  2 z . Gọi M  max z và m  min z , tính môđun của số phức w  M  mi . A. w  2 3 B. w  6 3 C. w  14 D. w  2 3 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Bài 53: Cho số phức z  x  yi ,  x , y  2 2  là số phức thỏa mãn hai điều kiện z  2  z  2  26 và biểu thức P  z  3 2  3 2 i đạt giá trị lớn nhất. Tính giá trị của biểu thức (x.y) 9 4 16 B. xy  9 9 2 17 D. xy  2 A. xy  C. xy  Bài 54: Cho ba số phức z1 , z2 , z3 thỏa mãn z1 z2 z3  biểu thức P  1 15  i . Tìm giá trị nhỏ nhất của 4 4 1 1 1 6    . z1 z2 z3 z1  z2  z3 A. Pmin  6 C. Pmin  5 B. Pmin  4 D. Pmin  3 Bài 55: Cho hai số phức z1 , z2 thỏa mãn z1  z2  1 . Gọi m là giá trị nhỏ nhất của biểu thức P  z1  1  z2  1  z1z2  1 . Khẳng định nào sau đây sai? A. 7 m3 4 B. 1  m  C. 3  m  11 5 D. 7 2 1 5 m 4 2 Bài 56: Cho số phức z  a  bi  0 sao cho z không phải là số thực và w  thực. Tính A. z z là số 1  z3 2 1 z 2 . 1 3a  1 C. 1 3a  2 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– 2 a2  Giải: B.  Theo đề: D. 1 2a  1 b  0( Loai ) 2 z z     0  z  z 1  z z  z   0   2 1 z    1  z3 1  z3  2a     1 1  2a   2 2a  1 2a  1 1 z 2a z 2 Bài 57: Cho hai số phức z , w khác 0 và thỏa mãn z  w  2 z  w . Gọi a, b lần lượt là phần thực và phần ảo của số phức u  z . Tính a2  b2  ? w 1 2 7 B. 2  Giải: 1 8 1 D. 4 A. C.  Chuẩn hóa: w  1 . Theo đề ta có:    x  12  y 2  4 x 2  y 2  1 15 1 15 1  z 1  2 z  2 2   z   i  u   i  a  b   2 2 8 8 8 8 4  z 1  1    x  1  y  1 Bài 58: Cho hai số phức z , w khác 0 và thỏa mãn z  w  5 z  w . Gọi a, b lần lượt là phần thực và phần ảo của số phức u  z.w . Tính a2  b2  ? —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– 1 50 1 C. 25  Giải: 1 100 1 D. 10 A. C.  Chuẩn hóa: w  1 . Theo đề ta có:    x  12  y 2  25 x2  y 2  1 3 11 1 3 11 1  z 1  5 z   z  iu  i  a2  b2   2 2 50 50 50 50 25    z 1  1  x  1  y  1 Bài 59: Cho số phức w và hai số thực a, b. Biết rằng w  i và 2w  1 là hai nghiệm của phương trình z2  az  b  0 . Tính a  b  ? 5 9 1 B.  9  Giải: 5 9 1 D. 9 C.  A.  3w  i  1   a  1  i  a  2  2i  2a     i   1  b  Theo định lý Viet ta có:  w  i 2 w  1  b 3 3          2a2 a 1 a  2   b   2a a 1   2 4 5  9 9 3      a  i  b     13  a  b   9 9  9 9 3 9 2 a  4  0 b  9   9 9 2 Bài 60: Cho hai số phức z1 , z2 thỏa mãn điều kiện z1  z2  2017 . Tìm giá trị nhỏ nhất 2  z1  z2   z1  z2  của biểu thức P       2 2    2017  z1 z2   2017  z1 z2  1 2017 2 B. 2017 A. 2 2 2017 2 1 D. 2017 2 C. —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– Đặt z1  2017  cos 2x  i sin 2x  và z2  2017  cos 2 y  i sin 2 y  Ta có: cos  x  y  z1  z2 cos 2 x  i sin 2 x  cos 2 y  i sin 2 y   2017 2  z1 z2 2017  1  cos(2 x  2 y)  i sin(2 x  2 y)  2017 cos  x  y  Tương tự: Suy ra P  sin  y  x  z1  z2  2 2017  z1 z2 2017 sin  y  x  cos2  x  y  2017 2 cos 2  x  y   sin 2  x  y  2017 2 sin 2  y  x  cos 2  x  y   1 1 1 cos2  x  y   sin 2  x  y   Vì  2 nên P  2   2017 2017 2 sin  x  y   1 Bài 61: Cho ba số phức z1 , z2 , z3 thỏa mãn điều kiện z1  z2  z3  1 và z2 z12 z2  2  3  1  0 . Khẳng đinh nào sau đây đúng? . z2 z3 z3 z1 z1z2 A. z1  z2  z3  3 C. z1  z2  z3  2 1 3 D. z1  z2  z3  4 B. z1  z2  z3  Bài 62: Cho số phức z thỏa mãn điều kiện z  1 . Tìm giá trị nhỏ nhất của biểu thức P  1008 1  z  1  z 2  …  1  z 2016  1  z 2017 A. 2017 C. 2018 B. 1008 D. 2016 Bài 63: Cho ba số phức z1 , z2 , z3 thỏa mãn điều kiện z1  z2  z3  1 , z1  z2  z3  0 và z12  z22  z32  0 . Khẳng đinh nào sau đây sai? . A. z12017  z22017  z12017  0 C. z12017  z22017  z12017  1 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao —————————————————————————————————————————————————————————————– B. z12017  z22017  z12017  3 Bài 64: Cho số phức z  D. z12017  z22017  z12017  4 và w  1  z  z2 là số thực. Khẳng đinh nào sau đây 1  z  z2 đúng? . A. 0  z  2 C. 1  z  3 B. 2  z  4 D. 3  z  5 Bài 65: Cho ba số phức z1 , z2 , z3 thỏa mãn điều kiện z1  z2  z3  0 và z1z2  z2 z3  z3 z1  0 . Tính giá trị của biểu thức P  z1 z2  z2 z3  z3 z1 z22 A. 3 B. 1 2 C. 2 D. 1 3 —————————————————————————————————————————————————————————————– Biên soạn: Phạm Minh Tuấn – TOANMATH.com
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top