Đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Bình Dương

Giới thiệu Đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Bình Dương

Học toán online.vn gửi đến các em học sinh và bạn đọc Đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Bình Dương.

Tài liệu Học sinh giỏi Toán 9 và hướng dẫn giải chi tiết các đề thi học sinh giỏi sẽ luôn được cập thường xuyên từ hoctoanonline.vn, các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất miễn phí nhé.

Tài liệu Đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Bình Dương

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Toán 9 tại đây

SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH DƯƠNG ĐỀ THI CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2019 – 2020 Môn thi: TOÁN – Lớp: 9 THCS Ngày thi: 15 tháng 05 năm 2020 Thời gian làm bài: 150 phút (không tính thời gian phát đề) —————————————— Bài 1: (4 điểm.) √ √ 2−1 2+1 a) Cho a = ;b = Tính a7 + b7 . 2 2 b) Giải phương trình sau với x ∈ R √ √ √ √ x2 − 3x + 2 + x + 3 = x2 + 2x − 3 + x − 2. Bài 2: (5 điểm) a) Cho a = n3 + 2n và b = n4 + 3n2 + 1. Với mỗi n là số tự nhiên, hãy tìm ước chung lớn nhất của a và b. b) Chứng minh rằng với mọi số nguyên dương x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y 4 là số chính phương Bài 3: (5 điểm) a) Tìm tất cả các số nguyên dương m sao cho m2 + 12 là số chính phương b) Cho ba số thực a, b, c thỏa mãn a + b + c = 0 và |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 Chứng minh rằng a4 + b6 + c8 ≤ 2. Bài 4: (2 điểm) Trên 3 canh AB, BC, CA của tam giác ABC, lần lượt lấy các điểm M, N, P AM BN CP sao cho = = = k. Gọi SM N P , SABC lần lượt là diện tích tam giác M N P và tam MB NC PA 3 giác ABC Tìm k để SM N P = SABC 8 Bài 5: (4 điểm) Cho nửa đường tròn tâm O đường kính AB = 2R (R là một độ dài cho d và COD = 120◦ . trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD Gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là F . a) Chứng minh rằng 4 điểm C, D, E, F cùng nằm trên một đường tròn và tính bán kính của đường tròn đó theo R. b) Tìm giá trị lớn nhât của diện tích tam giác F AB theo R khi C, D thay đổi nhưng vẫn thỏa mãn giả thiết bài toán. ——————– HẾT ——————– Biên soạn: Long Nguyễn
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top