Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc

Giới thiệu Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc

Học toán online.vn gửi đến các em học sinh và bạn đọc Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc mới nhất.

Tài liệu Toán 11 và các đáp án, hướng dẫn giải chi tiết các đề thi sẽ luôn được cập thường xuyên từ hoctoanonline.vn, các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất miễn phí nhé.

Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Toán 11 tại đây

KỲ KSCL KHỐI 11 LẦN 2 NĂM HỌC 2019 – 2020 Đề thi môn: TOÁN SỞ GD&ĐT TỈNH VĨNH PHÚC TRƯỜNG THPT YÊN LẠC 2 Thời gian làm bài: 90 phút; không kể thời gian phát đề. Đề thi gồm 05 trang. Mã đề thi 101 Câu 1: Tính tổng S = Cn0 + Cn1 + Cn2 + … + Cnn . A. S = 2n. B. S= 2n + 1. Câu 2: Cho hai tập hợp A = A ∩ B ≠ ∅. A. −2 < m ≤ 3. [ −2;3) = B và C. S= 2n − 1. D. S = 2n −1. [ m; m + 5) . Tìm tất cả các giá trị thực của tham số B. −2 ≤ m < 3. C. −7 < m ≤ −2. m để D. −7 < m < 3. Câu 3: Gọi S là tập nghiệm của phương trình 2 cos x − 3 = 0 . Khẳng định nào sau đây là đúng? 13π 5π 11π 13π A. − B. C. D. ∉ S. ∈ S. ∉ S. ∈ S. 6 6 6 6 1 1 1 Câu 4: Tính tổng S = 9 + 3 + 1 + + +  + n −3 +  . 3 9 3 27 14 16 15 A. S = . B. S = . C. S = . D. S = . 3 3 2 2 Câu 5: Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình π  cos  2 x −  − m = 2 có nghiệm. Tính tổng T của các phần tử trong S . 3  A. T = 6. B. T = −2. C. T = 3. D. T = −6. Câu 6: Trong không gian, cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho? A. 6. B. 4. C. 3. D. 2. Câu 7: Trong các hàm số sau, hàm số nào là hàm số chẵn? A. y = cos x. B. y = sin x. C. y = tan x. D. y = cot x.    Câu 8: Tam giác ABC có AB = AC = a và BAC = 120° . Tính AB + AC .         a A. AB + AC = B. AB + AC = C. AB + AC = a. 2a. a 3. D. AB + AC = . 2 Câu 9: Hệ số của x12 trong khai triển ( 2 x − x 2 ) . là 10 A. C108 . B. C102 28. C. C102 . D. −C102 28. Câu 10: Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu? A. m = 3. B. m = 2. C. m = 5. D. m = 4. 21.3b b Câu 11: Biết rằng S =1 + 2.3 + 3.3 + ... + 11.3 =a + . Tính P= a + . 4 4 A. P = 3. B. P = 4. C. P = 2. D. P = 1. Câu 12: Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là? 4 2 1 6 A. . B. . C. . D. . 16 16 16 16 2 Câu 13: Giá trị nhỏ nhất Fmin 10  y − 2x ≤ 2  của biểu thức F ( x; y ) = y – x trên miền xác định bởi hệ 2 y − x ≥ 4 là  x+ y ≤5  Trang 1/5 - Mã đề thi 101 A. Fmin = 1. B. Fmin = 3. C. Fmin = 2. D. Fmin = 4. Câu 14: Trong mặt phẳng tọa độ Oxy cho hai điểm A ( − 2; − 3) và B ( 4;1) . Phép đồng dạng tỉ số 1 biến điểm A thành A′, biến điểm B thành B′. Tính độ dài A′B′. 2 52 50 B. A′B′ = 52. C. A′B′ = A. A′B′ = . . 2 2 k= D. A′B′ = 50.  x = 1 − 3t Câu 15: Đường thẳng d đi qua điểm M ( −2;1) và vuông góc với đường thẳng ∆ :  có  y =−2 + 5t phương trình tham số là  x =−2 + 5t  x = 1 + 5t  x =−2 − 3t  x = 1 − 3t A.  B.  C.  D.  . . . .  y = 1 + 3t  y= 2 + 3t  y = 1 + 5t  y= 2 + 5t số m để phương trình  π π 2 cos 2 3 x + ( 3 − 2m ) cos 3 x + m − 2 = 0 có đúng 3 nghiệm thuộc khoảng  − ;  .  6 3 A. −1 ≤ m ≤ 1. B. 1 < m ≤ 2. C. 1 ≤ m ≤ 2. D. 1 ≤ m < 2. Câu 17: Một nhóm đoàn viên thanh niên tình nguyện về sinh hoạt tại một xã nông thôn gồm có 21 đoàn viên nam và 15 đoàn viên nữ. Hỏi có bao nhiêu cách phân chia 3 nhóm về 3 ấp để hoạt động sao cho mỗi ấp có 7 đoàn viên nam và 5 đoàn viên nữ? 12 12 7 A. C36 B. C217 C155 C147 C105 . C. 3C36 D. 3C21 . . C155 . Câu 16: Tìm tất cả các giá trị thực của tham x x Câu 18: Cho phương trình cos x + cos + 1 = 0 . Nếu đặt t = cos , ta được phương trình nào sau 2 2 đây? A. −2t 2 + t = B. 2t 2 + t = C. −2t 2 + t + 1 =0. D. 2t 2 + t − 1 =0. 0. 0. Câu 19: Cho π < α < A. M ≥ 0. 3π π  . Xác định dấu của biểu thức M = sin  − α  .cot (π + α ) . 2 2  B. M ≤ 0. C. M < 0. D. M > 0. Câu 20: Tìm hệ số của x 4 trong khai triển P ( x ) = (1 − x − 3 x 3 ) với n là số tự nhiên thỏa mãn hệ n thức Cnn − 2 + 6n + 5 = An2+1 . A. 270. B. 840. Câu 21: Cho dãy số có giới hạn un  A. lim un  1. C. 480. D. 210.  un  1  2 . Tính lim un . xác định bởi  1  , n 1 un 1  2  un  B. lim un  0. 1 2 C. lim un  . D. lim un  1. Câu 22: Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M ( 0;10 ) , N (100;10 ) và P (100;0 ) . Gọi S là tập hợp tất cả các điểm A ( x; y ) với x, y ∈ , nằm bên trong (kể cả trên cạnh) của OMNP. Lấy ngẫu nhiên một điểm A ( x; y ) ∈ S . Xác suất để x + y ≤ 90 bằng A. 86 . 101 B. 845 . 1111 Câu 23: Cho dãy số ( un ) với un = bằng 2 , giá trị của a là: A. a = 6. B. a = 8. C. 169 . 200 D. 473 . 500 an + 4 trong đó a là tham số thực. Để dãy số ( un ) có giới hạn 5n + 3 C. a = 4. D. a = 10. Trang 2/5 – Mã đề thi 101 1 mx + y =  1 (Với m là tham số). Khẳng định nào sau đây đúng để hệ Câu 24: Cho hệ phương trình my + z =  x + mz = 1  vô nghiệm. A. m ∈ ( 0; 2 ) B. m ∈ ( −1; 2 ) C. m ∈ ( −2;0 ) D. m ∈ (1; 2 ) Câu 25: Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí. 253 26 899 4 B. C. D. A. . . . . 35 1152 1152 75         2  Câu 26: Cho hai vectơ a và b thỏa mãn a= b= 1 và hai vectơ = u a − 3b và v= a + b vuông 5   góc với nhau. Xác định góc α giữa hai vectơ a và b. A. α = 600. B. α = 900. C. α = 1800. D. α = 450. Câu 27: Từ các chữ số 1, 5, 6, 7 có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số khác nhau ? A. 20. B. 14. C. 36. D. 24. 1  1  1   Câu 28: Cho Pn = 1 − 2  1 − 2  … 1 − 2  với n ≥ 2 và n ∈ . Mệnh đề nào sau đây đúng?  2  3   n  n +1 n +1 n −1 n +1 A. P = B. P = C. P = D. P = . . . . n+2 2n 2n n Câu 29: Tính tổng T các nghiệm của phương trình sin 2 x − cos x = 0 trên [ 0; 2π ] . A. T = π . B. T = 3π . C. T = 5π . 2 D. T = 2π . Câu 30: Tổng các nghiệm của phương trình ( x − 2 ) 2 x + 7 = x 2 − 4 bằng A. 1. B. 3. C. 2. D. 0. 2 Câu 31: Cho cấp số nhân ( un ) có u1 = −3 và q = . Mệnh đề nào sau đây đúng? 3 16 27 27 16 A. u5 = − . B. u5 = − . C. u5 = . D. u5 = . 27 16 16 27 Câu 32: Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn? A. 24. B. 4. C. 12. D. 6. n2 + n + 5 . 2n 2 + 1 3 1 A. L = . B. L = . C. L = 2. D. L = 1. 2 2 Câu 34: Trong mặt phẳng tọa độ Oxy cho hai đường thẳng song song a và a ‘ lần lượt có phương trình 2 x − 3 y − 1 =0 và 2 x − 3 y + 5 = 0. Phép tịnh tiến nào sau đây không biến đường thẳng a thành đường thẳng a ‘ ?     A. u = ( −3;0 ) . B. u = ( 0; 2 ) . C. u = ( 3; 4 ) . D. u = ( −1;1) . Câu 33: Tính giới hạn L = lim Câu 35: Số nghiệm nguyên của bất phương trình A. 0. Câu 36: Tính giới hạn B. 2. 2−3 x ≤ 1 là 1+ x C. 1. D. 3. Trang 3/5 – Mã đề thi 101 A. L  3. B. L  . C. L  5. D. L  . Câu 37: Cho tứ diện ABCD . Gọi I , J lần lượt thuộc cạnh AD, BC sao cho IA = 2 ID và JB = 2 JC . Gọi ( P ) là mặt phẳng qua IJ và song song với AB . Thiết diện của ( P ) và tứ diện ABCD là A. Hình thang. B. Hình bình hành. C. Hình tam giác. D. Tam giác đều. Câu 38: Trong mặt phẳng tọa độ Oxy cho điểm A ( 2;5 ) . Hỏi A là ảnh của điểm nào trong các điểm  sau qua phép tịnh tiến theo vectơ v = (1; 2 ) ? A. M (1;3) . B. N (1;6 ) . C. P ( 3;7 ) . D. Q ( 2; 4 ) . Câu 39: Trong mặt phẳng tọa độ Oxy cho đường tròn ( C ) : ( x − 1) + ( y + 2 ) = 4 . Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ  v = ( 2;3) biến ( C ) thành đường tròn nào trong các đường tròn có phương trình sau? 2 2 A. ( x − 1) + ( y − 1) = 4. B. ( x − 2 ) + ( y − 6 ) = 4. C. ( x − 2 ) + ( y − 3) = 4. D. x 2 + y 2 = 4. 2 2 2 2 2 2 Câu 40: Cho hình vuông tâm O. Hỏi có bao nhiêu phép quay tâm O góc α với 0 ≤ α < 2π , biến hình vuông trên thành chính nó? A. 1. B. 2. C. 3. D. 4. Câu 41: Cho đường tròn ( C ) : ( x + 1) + ( y − 1) = 25 và điểm M ( 9; −4 ) . Gọi ∆ là tiếp tuyến của 2 ( C ) , biết 2 ∆ đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P ( 6;5 ) đến ∆ bằng A. 3 . B. 5 . C. 4 . D. 3 . Câu 42: Phép vị tự tâm O tỉ số −3 lần lượt biến hai điểm A, B thành hai điểm C , D . Mệnh đề nào sau đây đúng?    1      A. AC = −3 BD. B. 3 AB = DC. C. AB = −3 CD. D. AB = CD. 3 u1 = 2  Câu 43: Cho dãy số ( un ) xác định bởi  . Tìm số hạng u4 . 1 un +1 ( un + 1) = 3 14 2 5 A. u4 = 1. B. u4 = . C. u4 = . D. u4 = . 3 27 9 = 30°. Mặt Câu 44: Cho hình chóp S . ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4, BAC phẳng ( P ) song song với ( ABC ) cắt đoạn SA tại M sao cho SM = 2 MA. Diện tích thiết diện của ( P) và hình chóp S . ABC bằng bao nhiêu? 25 16 14 C. . D. . . 9 9 9 Câu 45: Cho 4 điểm không đồng phẳng A, B, C , D. Gọi I , K lần lượt là trung điểm của AD và A. 1. B. BC. Giao tuyến của ( IBC ) và ( KAD ) là: A. BC. B. IK . C. AK . D. DK . Câu 46: Cho tứ diện ABCD. Gọi I , J lần lượt là trọng tâm các tam giác ABC và ABD. Chọn khẳng định đúng trong các khẳng định sau? A. IJ song song với CD. B. IJ song song với AB. C. IJ chéo CD. D. IJ cắt AB. Trang 4/5 - Mã đề thi 101 Câu 47: Cho hình chóp tứ giác đều S . ABCD có cạnh đáy bằng 10. M là điểm trên SA sao cho SM 2 = . Một mặt phẳng (α ) đi qua M song song với AB và CD, cắt hình chóp theo một tứ giác SA 3 có diện tích là: 400 200 40 160 A. B. C. D. . . . . 9 3 9 9 Câu 48: Tính tổng S của tất cả các giá trị của x thỏa mãn P2 .x 2 – P3 .x = 8. A. S = −4. B. S = 4. C. S = 3. D. S = −1.  2x π  Câu 49: Nghiệm của phương trình sin  −  = 0 là  3 3 π = A. x =+ kπ ( k ∈  ) . B. x kπ ( k ∈  ) . 3 2π k 3π π k 3π C. x = D. x =+ + ( k ∈ ). ( k ∈ ). 3 2 2 2 8 u7 − u3 = . Tìm công sai d của câp số cộng đã cho. Câu 50: Cho cấp số cộng ( un ) thỏa mãn  u2u7 = 75 1 A. d = . 2 ----------------------------------------------- 1 B. d = .        3 C. d = 2. D. d = 3. ----------- HẾT ---------- Trang 5/5 - Mã đề thi 101 made 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 cauhoi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 dapan A D C A D B A D B D A C A A A B B B C C A A D C A C D D B B B D B D C D B A A D D B C C B A A C C C TRƯỜNG THPT YÊN LẠC 2 TỔ: TOÁN – TIN HÌNH HỌC 11 ĐẠI SỐ 11 HÌNH HỌC 10 ĐẠI SỐ 10 Phần MA TRẬN ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN II NĂM HỌC 2019 – 2020 MÔN: TOÁN 11 Thời gian: 90 phút Tên bài M1 M2 M3 M4 Tập hợp 1 Số câu 1 Điểm 0.2 Phương trình – hệ phương trình 1 1 2 0.4 Bất phương trình – hệ bất phương trình 1 1 2 0.4 Góc và cung lượng giác 1 1 0.2 Vecto và các phép toán 1 2 0.4 Tọa độ trong mặt phẳng 1 2 0.4 1 0.2 3 3 1 3 0.6 0.6 0.2 0.6 3 0.6 3 3 2 2 4 0.6 0.6 0.4 0.4 0.8 2 0.4 1 1 1 1 2 1 2 1 50 0.2 0.2 0.2 0.2 0.4 0.2 0.4 0.2 10 Hàm số lượng giác PTLG cơ bản Một số PTLG thường gặp Quy tắc đếm Hoán vị - chỉnh hợp – tổ hợp Nhị thức Niuton Xác suất Dãy số Cấp số cộng Cấp số nhân Giơi hạn của dãy số Giới hạn của hàm số Phép tịnh tiến Phép quay KN về PDH và Hai hình bằng nhau Phép vị tự Phép đồng dạng Đại cương về ĐT và MP Hai đường thẳng song song và chéo nhau ĐT song song MP Hai MP song song TỔNG 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 5
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top