Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc

Giới thiệu Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc

Học toán online.vn gửi đến các em học sinh và bạn đọc Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc mới nhất.

Tài liệu Toán 11 và các đáp án, hướng dẫn giải chi tiết các đề thi sẽ luôn được cập thường xuyên từ hoctoanonline.vn, các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất miễn phí nhé.

Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Toán 11 tại đây

SỞ GD&ĐT VĨNH PHÚC TRƯỜNG THPT TAM DƯƠNG  KÌ THI KHẢO SÁT THPT LẦN 2 NĂM HỌC 2019 – 2020 MÔN: TOÁN LỚP 11 (Thời gian làm bài: 90 phút, không kể thời gian phát đề) Mã đề thi 123 Họ, tên thí sinh: …………………………………………………….. Số báo danh: ………………. Câu 1: Tập nghiệm của phương trình 2 sin 2 x + 5sin x + 3 = 0 là C. − π + kπ , k ∈   . A.  π + k 2π , k ∈   . B.  π + kπ , k ∈   . 2  2   2  D. − π + k 2π , k ∈   .  2  Câu 2: Trong mặt phẳng Oxy cho hai đường thẳng d1 : x= − y − 3 0; d 2 : 3 x= − y + 7 0 . Khi đó góc giữa hai đường thẳng d1 và d 2 bằng A. 150. B. 600. C. 450. D. 1050. x2 y 2 1 . Gọi M, N là hai điểm phân + = 25 9 biệt thuộc elip (E). Khi đó khoảng cách lớn nhất giữa hai điểm M, N là A. 6. B. 8. C. 12. D. 10. Câu 4: Tìm tất cả các giá trị thực của tham số m để phương trình sin x + m = 1 có nghiệm ? A. 0 < m < 2. B. 0 ≤ m ≤ 2. C. ∀m ∈ . D. −1 ≤ m ≤ 1. Câu 3: Trong mặt phẳng Oxy, cho elip có phương trình là ( E ) : Câu 5: Gọi D là tập xác định của hàm số f ( x) = 2x + 3 . Hỏi D chứa bao nhiêu số nguyên ? 2− 5− x A. 6. B. 5. C. 7. D. 4. Câu 6: Trong mặt phẳng Oxy, cho hai điểm A (1; 2 ) , B ( −1;3) . Khi đó phương trình đường thẳng đi qua hai điểm A, B là B. 2 x − y = C. x + 2 y − 3 = D. x − 3 y + 5 = A. 5 − 2 y − x = 0. 0. 0. 0. Câu 7: Cho hình tứ diện ABCD có M, N lần lượt là trung điểm của AB; BD. Các điểm P, Q lần lượt trên cạnh AC, CD sao cho NQ cắt MP tại I. Mệnh đề nào sau đây đúng ? A. P, A, I thẳng hàng. B. D, Q, I thẳng hàng. C. M, N, I thẳng hàng. D. B, C, I thẳng hàng.  Câu 8: Trong mặt phẳng Oxy cho hai điểm A (1; 2 ) , B ( −2;5 ) . Phép tịnh tiến theo vecto v biến điểm B  thành điểm A. Khi đó tọa độ của vecto v là     A. = B. v = ( 3;3) . C. v = ( −4; 4 ) . D. = v ( 3; −3) . v ( 4; −4 ) Câu 9: Cho dãy số ( un ) , biết = un 3 cos n − sin n . Trong các khẳng định sau về dãy số ( un ) , khẳng định nào đúng ? A. ( un ) đơn điệu tăng. B. ( un ) đơn điệu giảm. C. ( un ) bị chặn. D. ( un ) không bị chặn. Câu 10: Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Tìm số phần tử của không gian mẫu? A. 25. B. 10. C. 32. D. 62. Câu 11: Cho hai đường thẳng chéo nhau a và b. Lấy các điểm phân biệt A, B ∈ a; C , D ∈ b . Khẳng định nào sau đây đúng ? A. AD cắt BC. B. AD và BC cùng nằm trên một mặt phẳng. C. AD song song với BC. D. AD chéo BC. ( −1)n 2n . Khẳng định nào dưới đây về dãy số ( un ) là đúng ? A. ( un ) là dãy số không bị chặn. B. ( un ) là dãy số bị chặn. C. ( un ) là dãy số tăng. D. ( un ) là dãy số giảm. Câu 12: Cho dãy số ( un ) , biết un = Câu 13: Cho khai triển nhị thức Niu-tơn của ( 2019 − 2020 x )2021 = a0 + a1 x + a2 x 2 + a3 x3 + ... + a2021 x 2021 . Giá trị của a0 + a1 + a2 + ... + a2021 bằng: A. 2021. B. 2020. C. −1 . D. 1. Trang 1/5 - Mã đề thi 123 Câu 14: Trong mặt phẳng Oxy cho đường tròn ( C ) : x 2 + y 2 − 12 x + 18 y + 36 = 0 . Phép vị tự tâm O ( 0; 0 ) 1 biến đường tròn ( C ) thành đường tròn ( C ') , khi đó phương trình đường tròn ( C ') là 3 B. ( C ') : x 2 + y 2 − 12 x + 18 y + 108 = A. ( C ') : x 2 + y 2 + 4 x − 6 y − 68 = 0. 0. với tỉ số − C. ( C ') : x 2 + y 2 + 4 x − 6 y + 4 = 0. D. ( C ') : x 2 + y 2 − 4 x + 6 y + 4 = 0. Câu 15: Tính số cách sắp xếp 6 học sinh nam và 4 học sinh nữ vào một dãy ghế hàng ngang có 10 chỗ ngồi sao cho các học sinh nữ luôn ngồi cạnh nhau? B. 7!× 4! C. 6!× 4! D. 10! A. 6!× 5! Câu 16: Trong mặt phẳng Oxy cho điểm M ( 3; 0 ) . Khi đó phép quay tâm O ( 0; 0 ) góc quay 900 biến điểm M ( 3; 0 ) thành điểm M’ có tọa độ là A. M ' ( 0;3) . B. M ' ( 0; −3) . C. M ' ( −3; 0 ) . D. M ' ( 3;3) . Câu 17: Khai triển nhị thức Niu-tơn của (1 − x )2019 có bao nhiêu số hạng ? A. 2021. B. 2018. C. 2020. D. 2019. Câu 18: Xét một phép thử có không gian mẫu Ω và A là một biến cố của phép thử đó. Phát biểu nào sau đây sai ? A. P ( A ) = 1 − P A . B. 0 ≤ P ( A ) ≤ 1 . ( ) C. P ( A ) = 0 khi và chỉ khi A là biến cố chắc chắn. D. Xác suất của biến cố A là P ( A ) = Ω . A Câu 19: Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng phân biệt không song song thì chéo nhau. B. Hai đường thẳng chéo nhau thì không có điểm chung. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau. Câu 20: Điều kiện để phương trình 3sin x − m cos x = 5 có nghiệm là A. ∀m ∈ . B. m < −2. m ≥ 4 C.  .  m ≤ −4 D. −4 < m < 4. Câu 21: Tổ I lớp 10A có 5 học sinh nam và 6 học sinh nữ. Hỏi có bao nhiêu cách chọn một học sinh của tổ I lớp 10A đi trực nhật? A. 30. B. 11. C. 5. D. 6. Câu 22: Chọn ngẫu nhiên 2 quả trong chiếc hộp có 9 quả gồm cam và táo. Biết rằng xác suất chọn được hai quả táo bằng 5 , hỏi trong hộp có bao nhiêu quả táo ? 18 A. 18. B. 4. C. 13. Câu 23: Có bao nhiêu cách chọn 3 học sinh từ 40 học sinh? 3 3 A. 340. B. C40 C. A40 . . D. 5. D. 403. Câu 24: Phương trình x 2 − 2 ( m − 1) x + m 2 − 3m = 0 có tổng bình phương các nghiệm bằng 8. Khi đó tổng của tất cả các giá trị của tham số m bằng A. 1. B. 2. C. 5. D. 3. Câu 25: Xét phép thử gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi X là biến cố “Lần đầu xuất hiện mặt 6 chấm” và Y là biến cố “Lần thứ hai xuất hiện mặt 6 chấm”. Trong các khẳng định sau, khẳng định nào sai ? A. X ∩ Y là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”. B. X và Y là hai biến cố xung khắc. C. X ∪ Y là biến cố “Ít nhất một lần xuất hiện mặt 6 chấm”. D. X và Y là hai biến cố độc lập. Câu 26: Trong các hình vẽ sau, số hình vẽ có thể là hình biểu diễn của một tứ diện là Trang 2/5 - Mã đề thi 123 (lưu ý trong hình (III) thì điểm C thuộc BD) A. 1. B. 3. C. 4. D. 2. Câu 27: Từ tập X = {0;1; 2;3; 4;5} có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau mà số đó chia hết cho 5 ? A. 16. B. 120. C. 20. D. 36. Câu 28: Trong mặt phẳng Oxy, cho đường tròn 25 ( C ) : ( x − 1)2 + ( y − 2 )2 = và đường thẳng ∆ m : 3x − 4 y + m = 0 . Gọi S là tập hợp tất cả các giá trị của tham số m để đường thẳng ∆ m tiếp xúc với đường tròn (C). Khi đó tổng của tất cả các phần tử của S bằng A. 20. B. −10 . C. −30 . D. 10. Câu 29: Tập xác định của hàm số y = 1 là sin x − 1 A. ∀x ∈ . C.   π + k 2π , k ∈   . 2 B.  {kπ , k ∈ } . D.  − π + k 2π , k ∈   .  2  Câu 30: Số các giá trị nguyên của tham số m để bất phương trình mọi giá trị x ∈  là A. 7.  x − 4x + 9 2 x − ( m + 1) x + 4 2 ≥ 0 nghiệm đúng với C. vô số. D. 9. sin x  2 cos x  3 Câu 31: Giá trị lớn nhất của biểu thức H  là: 2sin x  cos x  4 9 2 A. 2 . B. . C. 3 . D. . 11 11 Câu 32: Trong hội chợ, một công ty sơn muốn xếp 1089 hộp sơn theo số lượng 1,3,5,... từ trên xuống dưới (số hộp sơn trên mỗi hàng xếp từ trên xuống dưới là các số lẻ liên tiếp – mô hình như hình bên dưới). Hàng cuối cùng có bao nhiêu hộp sơn? A. 63 . B. 8. B. 69 . Câu 33: Phương trình cos 2 2 x + cos 2 x − A. 20 . B. 18 . C. 67 . D. 65 . 3 0 có bao nhiêu nghiệm x ∈ ( −2π ;7π ) ? = 4 C. 16 . D. 19 . Câu 34: Cho tập hợp S = {1; 2;3; 4;5;6;7;8;9} . Chọn ngẫu nhiên ba số từ tập S . Tính xác suất p của biến cố trong ba số được chọn ra không chứa hai số nguyên liên tiếp nào. 5 3 5 5 A. p = . B. p = . C. p = . D. p = . 21 16 16 12 2 Câu 35: Số các giá trị thực của tham số m để phương trình ( sin x − 1) ( 2 cos x − ( 2m + 1) cos x + m ) = 0 Trang 3/5 - Mã đề thi 123 có đúng 4 nghiệm thực thuộc đoạn [ 0; 2π ] là: A. 3 . B. 1 . C. 2 . D. vô số. Câu 36: Hộp A có 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B có 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi, tính xác suất để hai viên bi được lấy ra có cùng màu. 44 91 88 45 . B. . C. . D. . A. 88 135 135 135 Câu 37: Cho hàm số f ( x) = ax 2 + bx + c có đồ thị như hình bên. y 3 O 1 2 3 x -1 Hỏi với những giá trị nào của tham số m thì phương trình f ( x ) − 1 =m có đúng 3 nghiệm phân biệt? A. m = 3. B. −2 < m < 3. C. m = 2 . Câu 38: Cho hàm số f ( x ) liên tục trên  và có đồ thị như hình vẽ bên. D. m > 3. 0 Số giá trị nguyên của tham số m để phương trình f 2 ( cos x ) + ( m − 2019 ) f ( cos x ) + m − 2020 = có đúng 6 nghiệm phân biệt thuộc đoạn [ 0; 2π ] là: A. 2 . B. 5 . C. 3 . D. 1 . Câu 39: Từ các chữ số của tập A = {0;1; 2;3; 4;5;6;7} lập được bao nhiêu số tự nhiên gồm 7 chữ số trong đó chữ số 2 xuất hiện đúng ba lần, các chữ số còn lại đôi một khác nhau? A. 31203. B. 27000 C. 181440. D. 12600. Câu 40: Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ dưới đây. Hãy tìm tập nghiệm S của bất phương trình f ( x ) − x + 1 ≥ 0 . A. S = [ −1;1] ∪ [ 2; + ∞ ) . ( −∞ ; − 1] ∪ [1; 2] . S [ 0;1] ∪ [ 2; + ∞ ) . C.= D. S = ( −∞ ;0] ∪ [1; 2] . 0 và điểm M ( 2;1) . Dây cung của ( C ) Câu 41: Cho đường tròn ( C ) : x 2 + y 2 − 2 x − 4 y − 4 = B. S = đi qua điểm M có độ dài ngắn nhất là Trang 4/5 – Mã đề thi 123 A. 6 . B. 7. C. 3 7 . D. 2 7 . Câu 42: Trên mặt phẳng toạ độ Oxy , cho điểm P ( −3; −2 ) và đường tròn ( C ) : ( x − 3) + ( y − 4 ) = 36 . Từ 2 2 điểm P kẻ các tiếp tuyến PM và PN tới đường tròn ( C ) , với M , N là các tiếp điểm. Phương trình đường thẳng MN là A. x + y + 1 = B. x − y − 1 =0 . C. x + y − 1 =0 . D. x − y + 1 = 0. 0. Câu 43: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O1 , O2 lần lượt là tâm của ABCD , ABEF . M là trung điểm của CD . Chọn khẳng định sai trong các khẳng định sau: A. O1O2 song song với ( EFM ) . B. O1O2 song song với ( BEC ) . C. MO2 cắt ( BEC ) . D. O1O2 song song với ( AFD ) . Câu 44: Cho hàm số y  1  2sin 2 x  1  2 cos 2 x . Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số. Khi đó  M  1  m 2 có giá trị bằng? 2 9 11 . B. . C. 4 . D. 5 . 2 2 Câu 45: Xét một bảng ô vuông gồm 4 × 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc −1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 . Hỏi có bao nhiêu cách? A. 144 . B. 90 . C. 72 . D. 80 . Câu 46: Cho tập hợp A gồm 8 phần tử. Có bao nhiêu cặp tập con khác rỗng không giao nhau của tập A ? A. 3025. B. 127. C. 3280. D. 3153. u1  2    Câu 47: Cho dãy số un  xác định bởi  un1 u 2n  1 3un  , n  * . Số hạng 2019 có giá trị bằng 1  2  n  3un  un   A. A. S = 20182 . 2019 B. S = 8144648 . 12103 C. S = 8152722 . 12109 D. S = 1632160 . 2423 32 − 1 1 3n +1 − 1 n 42019 − 22019 − 2019 Cn + … + Cn = 2 n +1 2019 B. n = 2019. C. n = 1009. D. n = 1010. Câu 48: Tìm n thỏa mãn Cn0 + A. n = 2018. Câu 49: Cho hình chóp S . ABCD có đáy ABCD là hình thang ( AB // CD ) , cạnh AB = 3a , AD = CD = a . Tam giác SAB cân tại S , SA = 2a . Mặt phẳng ( P ) song song với SA, AB cắt các cạnh AD, BC , SC , SD theo thứ tự tại M , N , P, Q . Đặt AM= x ( 0 < x < a ) . Gọi x là giá trị để tứ giác MNPQ ngoại tiếp được đường tròn, bán kính đường tròn đó là a 7 a 7 3a A. . B. . C. . 4 6 4 D. a . u1 = 2019  Câu 50: Cho dãy số ( un ) được xác định bởi  . Tính giá trị của 2019 u = − u + u + u + ... + u , n > 1 ( ) 1 2 3 n −1  n n biểu thức A= 2.u1 + 22.u2 + … + 22019.u2019 A. 32019 . ——————————————– B. 1 . C. 3 . D. 2 . ———– HẾT ———-(Thí sinh không sử dụng tài liệu!) Trang 5/5 – Mã đề thi 123
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top