218 câu vận dụng cao giới hạn ôn thi THPT môn Toán

Giới thiệu 218 câu vận dụng cao giới hạn ôn thi THPT môn Toán

Học toán online.vn gửi đến các em học sinh và quý thây cô 218 câu vận dụng cao giới hạn ôn thi THPT môn ToánChương Giới hạn.

Tài liệu môn Toán 11  và hướng dẫn giải chi tiết các đề thi từ cơ bản đến vận dụng cao sẽ luôn được cập thường xuyên từ hoctoanonline.vn , các em học sinh và quý bạn đọc truy cập web để nhận những tài liệu Toán hay và mới nhất nhé.

Các em học sinh và bạn đọc tìm kiếm thêm tài liệu Toán 11 tại đây.

Text 218 câu vận dụng cao giới hạn ôn thi THPT môn Toán
Tư duy mở trắc nghiệm toán lý Sưu tầm và tổng hợp 218 CÂU TỔNG ÔN GIỚI HẠN Môn: Toán (Đề thi có 21 trang) Thời gian làm bài phút (218 câu trắc nghiệm) Họ và tên thí sinh: ……………………………………………. xm − xn Câu 1. Tính L = lim với m, n ∈ N∗ . x→1 x − 1 A L = 0. B L = m − n. C L = +∞. Mã đề thi 883 D L = m + n. Câu 2. Cho 4ABC đều có cạnh bằng 1. Gọi A1 , B1 , C1 lần lượt là trung điểm BC, CA, AB ta được 4A1 B1 C1 . Tương tự 4A2 B2 C2 có các đỉnh là trung điểm của các cạnh B1 C1 , C1 A1 , A1 B1 . Quá trình lặp lại sau n bước (n ∈ N∗ ) ta được 4An Bn Cn . Gọi S0 , Sn lần lươt là diện tích 4ABC và 4An Bn Cn . Đặt Tn là tổng diện tích các tam giác ABC, A1 B1 C1 ,. . . , An Bn Cn . Hỏi Tn không vượt quá số nào sau đây √ √ √ √ 19 3 100 3 11 3 3 . . . . A B C D 240 299 36 4 √ 2  x −x+4−2 , x 6= 1 Câu 3. Tìm các giá trị của m sao cho hàm số f (x) = liên tục trên x−1  mx + 1, x=1 R. 1 2 3 5 A m= . B m= . C m=− . D m= . 2 5 4 4 Câu 4. Cho dãy số (un ) thỏa mãn ( u1 = 2 un+1 = un + 2(n + 1) với n = 1, 2, 3, . . .  Khi đó lim n→+∞ A +∞. 1 1 1 + + ··· + u1 u2 un B 2. Câu 5. Tính lim  bằng C 1. D 0. 1 + 3 + 5 + 7 + · · · + (2n − 1) · n. (2n + 1)2 (n + 1) 1 1 B +∞. C . D . 2 4  √ √ Câu 6. Tính giới hạn T = lim 16n+1 + 4n − 16n+1 + 3n . 1 1 1 A T = 0. B T = . C T = . D T = . 8 4 16 5 2 Câu 7. Cho phương trình x + 3x − 14x − 7 = 0. Mệnh đề nào dưới đây là đúng. A Phương trình có đúng 3 nghiệm trong (−1; 2). B Phương trình có ít nhất 2 nghiệm trong (−1; 2). C Phương trình không có nghiệm trong (1; 2). D Phương trình có 1 nghiệm trong (0; 1). A 0. ax2 + 4x + 3 Câu 8. Cho hàm số f (x) = , (a ∈ R, a 6= 0). Khi đó lim f (x) bằng x→−∞ 3x − 2ax2 1 a A − . B −∞. C +∞. D . 2 3 Trang 1/21 − Mã đề 883 Câu 9. Cho hàm số f (x) = ax3 − x + 1. Tìm điều kiện của a để hàm số liên tục tại x = 0. A a = 0. B a = 1. C a 6= 0. D ∀a.  u1 = 2 Câu 10. Cho dãy số (un ) xác định bởi . Tìm giới hạn lim un . un+1 = 2un + 1 5 √ 2 2 1 . A I= . B I= C I= . D +∞. 5 5 3 ( ax + 5 x ≥ 2 Câu 11. Hàm số f (x) = liên tục trên R nếu a bằng 3x − 1 x < 2 A 7. B 0. C −1. D 3. Câu 12. Cho hàm số f (x) = tan x + cot x. Nghiệm của phương trình f 0 (x) = 0 là π π π A x = − + kπ(k ∈ Z). B x = + k (k ∈ Z). 4 4 2 π π π C x = + kπ(k ∈ Z). D x = − + k (k ∈ Z). 4 4 2 √ Câu 13. Tính giới hạn lim ( x100 − 2x50 + 7 − x50 ). t→+∞ C −2.  √ 4 − x x+5−3 Câu 14. Tìm giá trị của m để hàm số f (x) =  1−m A m = 2. B m = 0. C m = 7. √ x2 + 2x + 1 . Câu 15. Tìm lim x→−∞ 2x − 1 1 A −1. B . C 1. 2 √ √  Câu 16. Tính lim n 4n2 + 3 − 3 8n3 + n . A 0. D −1. B 1. A −∞. B +∞. C 1. khi x 6= 4 liên tục tại x = 4. khi x = 4 D m = −5. 1 D − . 2 D 2 . 3 Câu 17. Tính lim (3x4 + 9x2 − 5). x→−∞ A −2. B 2. C −∞. D +∞. √ √ x + 1 − x2 + x + 1 Câu 18. Giá trị của lim bằng: x→0 x 1 A − . B −1. C 0. D −∞. 2   √4 − x khi x > 4 x−2 Câu 19. Cho hàm số f (x) = . Tìm a để hàm số liên tục trên toàn trục  ax + 8 khi x 6 4 số. A a = −3. B a = −2. C a = −1. D a = −4. x3 − 2ax2 + 4ax − 8 bằng x→2 x2 − 4 3a B 2a. C . 4 Câu 20. Giới hạn lim A 3 − a. D 0. Câu 21. Cho f (x) xác định trên khoảng (a; b) chứa điểm 0 và |f (x)| ≤ x , ∀x ∈ 2017x + 1 (a, b){0}. Tính lim f (x). x→0 Trang 2/21 − Mã đề 883 A lim f (x) = −1. B lim f (x) = 1. x→0 x→0 C lim f (x) = 0. D Hàm số không có giới hạn tại 0. x→0 √ √ 3 1 + 2x − 1 + 6x m m = − ; trong đó m, n là các số tự nhiên, là phân số tối Câu 22. Cho lim x→0 x n n giản. Giá trị của biểu thức A = m + n là A 11. B 10. C 8. D 9. Câu 23. Với n là số nguyên dương, đặt 1 1 1 √ + √ √ + ··· + √ Sn = √ √ . n n + 1 + (n + 1) n 1 2+2 1 2 3+3 2 Khi đó, lim Sn bằng A 1. 1 B √ . 2+2 √ x − 2 − |x − 2| . Câu 24. Tính lim+ x→2 |4 − x2 | 1 A . B −∞. 4 C √ C 0. 1 . 2−1 1 D √ . 2 D +∞. 2an3 − 4n2 + 2an + 1 . Câu 25. Cho a, b là các hằng số, b khác 0. Tính lim bn3 − 5bn + 3b − 1 2a A . B 0. C 2. D 1. b  √ √ 2 2 x + ax + 1 − x + 1 (a > 0) có kết quả là Câu 26. Giới hạn lim x→+∞ a A . B a. C 0. D +∞. 2 ( u1 = 2 1 1 1 + + ··· + . Tính Câu 27. Cho dãy số (un ) với . Gọi Sn = u1 u2 u2 u3 un un+1 un+1 = un + 3 lim Sn . 1 1 A lim Sn = 1. B lim Sn = . C lim Sn = . D lim Sn = 0. 6 3 √  Câu 28. Giá trị của lim n2 + 2n + 3 − n bằng A 1. B 3. C 0. D 2. Câu 29. Cho hàm số y = f (x) liên tục trên [a; b] và f (a)f (b) ≤ 0. Khẳng định nào sau đây là đúng? A Hàm số liên tục tại x = a. B f (x) = 0 luôn có ít nhất một nghiệm. C Hàm số liên tục trên tập số thưc. D Hàm số liên tục tại x = b. Câu 30. Có bao nhiêu số tự nhiên có năm chữ số mà tổng các chữ số trong mỗi số bằng 3 ? A 36. B 19. C 21. D 15.  2  x − 16 khi x 6= 4 Câu 31. Cho hàm số f (x) = . Tập hợp các giá trị của a để hàm số liên tục x−4  ax − 1 khi x = 4 tại x =4 là    9 9 A − . B {8}. C . D {0}. 4 4 1 4 Câu 32. Cho hàm số f (x) = x5 + x3 − 5x + 3. Mệnh đề nào sau đây sai? 5 3 A Hàm số f (x) liên tục trên R. Trang 3/21 − Mã đề 883 1 B Hàm số đã cho gián đoạn tại x0 = . 5 C Phương trình f (x) = 0 có nghiệm trên khoảng (−1; 1). D Phương trình f (x) = 0 có nghiệm trên khoảng (0; +∞).  4 x +x     x2 + x nếu x 6= 0; x 6= −1 Câu 33. Cho hàm số f (x) = 3 nếu x = −1     1 nếu x = 0 A liên tục tại mọi điểm trừ điểm x = 0. B liên tục trên R. C liên tục tại mọi điểm trừ điểm x = −1. D liên tục tại mọi điểm trừ các điểm thuộc đoạn [−1; 0]. Câu 34. Trong bốn giới hạn sau đây, giới hạn nào không tồn tại? (x − 1)2 2x + 5 x+2 2x . . . A lim 2 B lim 2 C lim D lim √ . x→1 x + 3x − 4 x→3 x − 3 x→1 x − 1 x→0 3x + 1 (2 − a)x − 3 √ = +∞ (với a là tham số). Giá trị nhỏ nhất của P = a2 − 2a + 4 Câu 35. Biết lim x→+∞ x − x2 + 1 là A 5. B 1. C 3. D 4.   x2 cos 2x Câu 36. Tính lim 5 − 2 . x→+∞ x +1 1 A 4. B . 4 C Không tồn tại giới hạn. D 5. Câu 37. Cho hàm số f (x) = tan x + cot x. Nghiệm của phương trình f 0 (x) = 0 là π π π A x = − + k (k ∈ Z). B x = − + kπ(k ∈ Z). 4 2 4 π π π C x = + k (k ∈ Z). D x = + kπ(k ∈ Z). 4 2 4 Câu 38. Trong dịp hội trại hè 2017 bạn A thả một quả bóng cao su từ độ cao 3 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng hai phần ba độ cao lần rơi trước. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng: A 13 m. B 14 m. C 15 m. D 16 m. √ √ 3 x2 − 2 3 x + 1 . Câu 39. Tìm lim− x→1 (x − 1)2 1 A 0. B 9. C −1. D . 9 √ √ 3 ax + 1 − 1 − bx Câu 40. Biết rằng b > 0, a + b = 5 và lim = 2. Khẳng định nào dưới đây là x→0 x sai? A a2 − b2 > 6. B 1 ≤ a ≤ 3. C a − b ≥ 0. D a2 + b2 > 10. √  Câu 41. Tính giới hạn T = lim x2 + 2x + 5 − x . x→+∞ C T = −∞. D T = 2.  √ 3 − x khi x 6= 3 x+1−2 Câu 42. Tìm tất cả các giá trị thực của m để hàm số f (x) = liên tục  m khi x = 3 tại x = 3. A m = −1. B m = 4. C m = −4. D m = 1. A T = 1. B T = 0. Trang 4/21 − Mã đề 883 Câu 43. Hãy chọn mệnh đề sai trong các mệnh đề sau? A Hàm số f (x) liên tục trên (a; b) và f (a) · f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm thuộc [a; b]. B Hàm số f (x) liên tục trên [a; b] và f (a) · f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm thuộc (a; b). C Hàm số f (x) được gọi là liên tục tại x0 thuộc tập xác định của nó nếu lim f (x) = f (x0 ). x→x0 D Hàm số f (x) được gọi là gián đoạn tại x0 nếu x0 không thuộc tập xác định của nó.   √4 − x khi x > 4 x−2 Câu 44. Cho hàm số f (x) = . Tìm a để hàm số liên tục trên toàn trục  ax + 8 khi x 6 4 số. A a = −4. B a = −3. C a = −1. D a = −2. √  π 2 t+3−4 Câu 45. Phương trình sin x = lim có nghiệm x ∈ 0; là t→1 t−1 2 π 1 A . B 30◦ . C . D Vô nghiệm. 6 2 ( sin x nếu cos x ≥ 0 Câu 46. Cho hàm số f (x) = . Hỏi hàm số f có bao nhiêu điểm gián 1 + cos x nếu cos x < 0 đoạn trên khoảng (0; 2018)? A 2018. B 542. C 321. D 1009. Câu 47. Trong bốn giới hạn sau đây, giới hạn nào không tồn tại? x+2 2x + 5 2x (x − 1)2 A lim . B lim 2 . C lim √ . D lim 2 . x→3 x − 3 x→0 x→1 x + 3x − 4 x→1 x − 1 3x + 1 √ √ 3x − 2 x + x4 − 5x Câu 48. Giá trị của lim là x→+∞ 4x2 + 4x − 5 3 13 1 1 A . B C . D . . 4 25 2 4 √ 2 Câu 49. Tính lim ( x + x − x). x→+∞ 1 A . B +∞. C −∞. D 0. 2 x2 − 3x + 2 Câu 50. Tính lim+ √ . x→1 6 x + 8 − x − 17 1 A 0. B +∞. C . D −∞. 6  √ 3 − x nếu x 6= 3 x+1−2 Câu 51. Cho hàm số f (x) = . Hàm số đã cho liên tục tại x = 3 khi  m nếu x = 3 m bằng A 4. B 1. C −1. D −4. x2 + 1 = +∞. x→+∞ ax − 1 C a ≥ 0. Câu 52. Tìm tất cả các giá trị của a để lim lim A a > 0. B a ∈ R. D 0. a Câu 53. Cho a là hằng số. Giới hạn nào sau đây có giá trị bằng ? 2 √  an2 − 4n + 2a 2 + an + 2 − n . A lim . B lim n 2(n3 − 3n + 4) a  3 + a · 5n 3 2 C lim n+1 . D lim n + 4n − 5an − 1 . 4 + 2 · 5n+1 2 Trang 5/21 − Mã đề 883 √ Câu 54. Cho dãy số (un ) xác định bởi: u1 = 2, un+1 = 2 + un với mọi n nguyên dương. Tính lim un .√ A 2. B 4. C −1. D 2.  √ 3 − x nếu x 6= 3 x+1−2 Câu 55. Cho hàm số f (x) = . Hàm số đã cho liên tục tại x = 3 khi  m nếu x = 3 m bằng A −1. B 4. C −4. D 1. √ √  Câu 56. Tính lim 7×2 + 2x + x 7 . x→−∞ √ √ 7 5 7 . . A −∞. B 0. C − D − 7 14 √ √ 1 + 2x − 3 1 + 3x Câu 57. Tính lim . x→0 x2 1 A −∞. B +∞. C . D 0. 2 3×2 − 2x + 1 . Câu 58. Tính giới hạn sau lim √ x→∞ 3 8×6 − 4×3 3 . A 0. B 1. C D +∞. 2   √ Câu 59. Tính lim 3x + 1 − 9×2 − 6x + 1 . x→+∞ 1 1 A 4. B . C 2. D . 4 2  2  x + ax + b khi x < −2 có giới hạn hữu hạn Câu 60. Gọi a, b là các giá trị để hàm số f (x) = x2 − 4  x+1 khi x ≥ −2 khi x dần tới −2. Tính 3a − b. A 4. B 12. C 24. D 8. ( ax + 5 x ≥ 2 Câu 61. Hàm số f (x) = liên tục trên R nếu a bằng 3x − 1 x < 2 A −1. B 7. C 3. D 0. Câu 62. Trong √ các giới hạn  sau đây, giới hạn nào bằng −1?√  2 A lim x + 2x − x . B lim x2 + 2x + x . x→+∞  x→−∞    √ √ 2 C lim x + 2x + x . D lim x2 + 2x − x . x→+∞ x→−∞ √ 7x6 + 3x4 + 5x2 Câu 63. Tính lim . x→0 6x √ √ 7 7 A Không tồn tại. B − . C . D 6 6 √ √ x+1− 3x+1 Câu 64. Tính lim . x→0 x 7 8 80 A . B . C . D 41 47 481 Câu 65. Cho các mệnh đề sau √ 5 . 6 1 . 6 I) Nếu lim+ f (x) = L > 0 và lim+ g(x) = +∞ thì lim+ f (x) · g(x) = −∞. x→x0 x→x0 x→x0 Trang 6/21 − Mã đề 883 II) Nếu lim+ f (x) = L > 0 và lim+ g(x) = +∞ thì lim+ f (x) · g(x) = +∞. x→x0 x→x0 x→x0 III) Nếu lim+ f (x) = L và lim+ g(x) = +∞ thì lim+ x→x0 x→x0 x→x0 f (x) = 0. g(x) IV) Nếu lim+ f (x) = L < 0 và lim+ g(x) = 0 thì lim+ x→x0 x→x0 Số mệnh đề đúng là A 3. B 1. x→x0 f (x) = +∞. g(x) C 2. D 4. Câu 66. Phát biểu nào trong các phát biểu sau là sai? 1 1 A lim = 0. B lim k = 0, (k > 1). n n C lim un = c, (un = c là hằng số). D lim q n = 0, (|q| > 1). 3 x là Giới hạn lim 1 x→0 4− x 3 B . 4  2  x − 16 Cho hàm số f (x) = x−4  ax − 1 là 2+ Câu 67. A 3. Câu 68. tại x = 4 C khi x 6= 4 1 . 2 D −3. . Tập hợp các giá trị của a để hàm số liên tục khi x = 4   9 A {0}. B {8}. C − . 4  2  x − 2x − 3 Câu 69. Với giá trị nào của m thì hàm số f (x) = x−3  4x − 2m A m = 1. B m = 3. C m = 4.   9 . D 4 khi x 6= 3 liên tục trên R? khi x = 3 D m = −4. Câu 70. Phương trình x4 + 8×3 + 11×2 − 32x − 60 = 0 A không có nghiệm trong khoảng (0; 3). B chỉ có một nghiệm trong khoảng (−5; 5). C không có nghiệm trong khoảng (−3; 0). D có hai nghiệm trong khoảng (−3; 3). √  Câu 71. Tính I = lim 4×2 + 3x + 1 − 2x . x→+∞ 1 3 A I= . B I= . C I = 0. D I = +∞. 2 4 Câu 72. Cho các mệnh đề sau I) Nếu lim+ f (x) = L > 0 và lim+ g(x) = +∞ thì lim+ f (x) · g(x) = −∞. x→x0 x→x0 x→x0 II) Nếu lim+ f (x) = L > 0 và lim+ g(x) = +∞ thì lim+ f (x) · g(x) = +∞. x→x0 x→x0 x→x0 III) Nếu lim+ f (x) = L và lim+ g(x) = +∞ thì lim+ x→x0 x→x0 x→x0 f (x) = 0. g(x) IV) Nếu lim+ f (x) = L < 0 và lim+ g(x) = 0 thì lim+ x→x0 x→x0 x→x0 f (x) = +∞. g(x) Trang 7/21 − Mã đề 883 Số mệnh đề đúng là A 1. B 2. C 4. D 3. √ x2 + 5 − 3 Câu 73. Tính lim . x→−2 x2 − x − 6 4 2 A . B − . 9 15 4 C − . 9  2  3x − 7x − 6 Câu 74. Tìm giá trị của tham số m để hàm số f (x) = x−3  2 x + 5mx + 2 mọi x thuộc R. A m = 7. B m = 0. C m = 2. D 2 . 15 khi x > 3 liên tục với khi x ≤ 3 D m = 3. Câu 75. Hàm số nào trong các hàm số sau gián đoạn tại x = −3 và x = 1 p x2 − 5x + 6 . A y= B y = (x + 3)(x − 1). x−1 x+2 . C y= D y = x2 + 2x − 3. (x − 1)(4x + 12) Câu 76. Hãy chọn mệnh đề sai trong các mệnh đề sau? A Hàm số f (x) được gọi là gián đoạn tại x0 nếu x0 không thuộc tập xác định của nó. B Hàm số f (x) được gọi là liên tục tại x0 thuộc tập xác định của nó nếu lim f (x) = f (x0 ). x→x0 C Hàm số f (x) liên tục trên (a; b) và f (a) · f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm thuộc [a; b]. D Hàm số f (x) liên tục trên [a; b] và f (a) · f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm thuộc (a; b). √ √ 3 x2 − 2 3 x + 1 . Câu 77. Tìm lim− x→1 (x − 1)2 1 A −1. B 9. C . D 0. 9 f (x) − 16 Câu 78. Cho f (x) là một đa thức thỏa mãn lim = 24. Tính x→1 x−1 f (x) − 16 p . x→1 (x − 1) 2f (x) + 4 + 6 I = lim A 24. B +∞. √ Câu 79. Tính lim ( x2 + x − x). C 0. D 2. B +∞. C −∞. D x2 − 2 . x→2 x − 2 B 2. C +∞. D −∞. x→+∞ A 0. 1 . 2 Câu 80. Tính giới hạn lim A Không tồn tại. Câu 81. Tính lim A −1. 3n + cos2 n . 3n B +∞. C 0. D 1. √  Câu 82. Cho các số thực a, b, c thoả mãn c2 + a = 18 và lim ax2 + bx − cx = −2. Tính x→+∞ giá trị biểu thức P = a + b + 5c. A P = 9. B P = 12. C P = 5. D P = 18. Trang 8/21 − Mã đề 883 ( x2 + m khi x ≥ 2 Câu 83. Cho hàm số f (x) = (m là tham số). Tìm giá trị thực của tham số 3x − 1 khi x < 2 m để hàm số đã cho liên tục tại x0 = 2. A m = 1. B m = 2. C m = 0. D m = 3. Câu 84. lim A +∞. 5n + 4 · 3n bằng 5n+1 − 1 B 4. C 0. D 1 . 5 3x2 − x5 . Câu 85. Tính giới hạn lim 4 x→−1 x + x + 5 4 4 2 2 A . B . C . D . 5 7 7 5 √ 1− 31−x Câu 86. Tính lim . x→0 x 1 1 A . B . C 1. D 0. 9 3 Câu 87. Trong các dãy số sau, dãy số nào có giới hạn hữu √ hạn? A un = 3n + 2n . B un = n2 + 2n − n. 2n3 − 11n + 1 1 √ C un = . D un = √ . 2 n −2 n2 − 2 − n2 + 4 ( x2 − 2x nếu x 6= 1 Câu 88. Cho hàm số f (x) = . Chọn m bằng bao nhiêu để hàm số f (x) 2m + 1 nếu x = 1 liên tục tại x = 1? A m = −1. B m = 1. C m = 3. D m = 0. √  √ Câu 89. Tính lim 7x2 + 2x + x 7 . x→−∞ √ √ 5 7 7 A − B 0. C −∞. D − . . 7 14  2  x − 2x − 3 khi x 6= 3 Câu 90. Với giá trị nào của m thì hàm số f (x) = liên tục trên R? x−3  4x − 2m khi x = 3 A m = 3. B m = 4. C m = −4. D m = 1. Câu 91. Cho hàm số f (x) chưa xác định tại x = 0, f (x) = x3 + 2x2 . Để hàm số f (x) liên tục x2 tại x = 0 thì phải gán cho f (0) giá trị bằng bao nhiêu? A 3. B 0. C 1. D 2. −2x + 1 . x−1 B +∞. D 2. Câu 92. Tính lim+ x→1 A −2. C −∞. √ 1 + 2 + 3 + ... + n =? n √ 2 B . 2 Trong các hàm số Câu 93. L = lim 1 . 2 Câu 94. A f1 (x) = sin x, f2 (x) = √ C √ 2. D 1. ( √ x + x − 1 khi x > 1 x + 1, f3 (x) = x3 − 3x và f4 (x) = 2−x khi x < 1 Trang 9/21 − Mã đề 883 có tất cả bao nhiêu hàm số liên tục trên R ? A 1. B 3. C 2. D 4. 2x2 + (a − 2)x − a = 1 với a là tham số. Tính a2 + a + 1. x→1 x4 − 5x3 + 5x2 + 5x − 6 A 7. B 3. C 5. D −2. √ x2 − 3x + ax Câu 96. Cho a, b là các số thực khác 0. Tìm điều kiện a, b để giới hạn lim = x→−∞ bx − 1 3? −a − 1 a−1 a+1 a−1 = 3. = 3. = 3. = 3. A B C D b b b −b √ √ a x2 + 1 + 2017 1 Câu 97. Cho lim = ; lim ( x2 + bx + 1 − x) = 2. Tính P = 4a + b. x→−∞ x + 2018 2 x→+∞ A P = 2. B P = 1. C P = 3. D P = −1.  2  4x − 3x + 1 Câu 98. Cho hai số thực a và b thoả mãn lim − ax − b = 0. Khi đó a + 2b n→+∞ 2x + 1 bằng A −3. B −4. C 4. D −5. Câu 95. Cho lim Câu 99. Trong bốn giới hạn sau đây, giới hạn nào bằng 0? 2n − 1 (2n − 1)(n + 3)2 A lim . B lim . 2 − 5 · 3n n2 − 2n3 3 · 5n + 2 10 − 2n3 C lim . D lim . 3 · 2n − 3n n2 + 5n cos x Câu 100. Tìm giới hạn L = limπ π. x→ x − 2 2 π A L= . B L = −1. C L = 0. D L = 1. 2 √ x2 + 2x + 1 Câu 101. Tìm lim . x→−∞ 2x − 1 1 1 A −1. B − . C . D 1. 2 2 √ 1− 31−x Câu 102. Tính lim . x→0 x 1 1 A 0. B 1. C . D . 3 9  2  x + x − 6 khi x > 2 Câu 103. Cho hàm số f (x) = . Xác định a để hàm số liên tục tại điểm x−2  − 2ax + 1 khi x ≤ 2 x = 2. 1 A a = 2. B a= . C a = 1. D a = −1. 2 √ x+4−2   ,x > 0 x Câu 104. Cho hàm số f (x) = m là tham số. Tìm giá trị của tham số m  mx + m + 1 , x ≤ 0 4 để hàm số có giới hạn tại x = 0. 21 −1 A m = 1. B m= . C m = 0. D m= . 2 2 Trang 10/21 − Mã đề 883  2 − (a − 2)x − 2  ax √ nếu x 6= 1 x+3−2 . Có tất cả bao nhiêu giá trị của Câu 105. Cho hàm số f (x) =  2 8+a nếu x = 1 tham số a để hàm số liên tục tại x = 1? A 3. B 2. C 1. D 0. Câu 106. Cho tứ diện ABCD có thể tích V . Gọi A1 B1 C1 D1 là tứ diện với các đỉnh lần lượt là trọng tâm các tam giác BCD, CDA, DAB, ABC và có thể tích V1 . Gọi A2 B2 C2 D2 là tứ diện với các đỉnh lần lượt là trọng tâm các tam giác B1 C1 D1 , C1 D1 A1 , D1 A1 B1 , A1 B1 C1 và có thể tích V2 ,… cứ như vậy cho đến tứ diện An Bn Cn Dn có thể tích Vn với n ∈ N∗ . Tính giá trị của P = lim (V1 + V2 + · · ·Vn ). n→+∞ V V 8V 82V . B . C . D . 27 26 9 81 √ Câu 107. Giá trị của giới hạn lim ( 2×2 − x + 2017) là x→+∞ √ A +∞. B Không xác định. C 2 − 1. D −∞. √ √ 2 1+x− 38−x . Tính lim f (x). Câu 108. Cho hàm số y = f (x) = x→0 x 13 1 10 . . . A B C +∞. D 12 12 11 Câu 109. Cho phương trình x5 + 3×2 − 14x − 7 = 0. Mệnh đề nào dưới đây là đúng. A Phương trình có đúng 3 nghiệm trong (−1; 2). B Phương trình có 1 nghiệm trong (0; 1). C Phương trình không có nghiệm trong (1; 2). D Phương trình có ít nhất 2 nghiệm trong (−1; 2). A 2 + 4 + 6 + · · · + 2n . x→−∞ n2 − n B 0. Câu 110. Tìm lim 1 . D 1. 2 Câu 111. Trong √ các giới hạn  sau đây, giới hạn nào bằng −1? √  2 A lim B lim x + 2x − x . x2 + 2x + x . x→−∞  x→+∞    √ √ 2 C lim x + 2x − x . D lim x2 + 2x + x . x→+∞ x→−∞  |2×2 − 7x + 6|    khi x < 2 x−2 Câu 112. Cho hàm số f (x) = . Biết a là giá trị để hàm số liên tục tại 1−x   a + khi x ≥ 2 2+x 7 x0 = 2. Tìm số nghiệm nguyên của bất phương trình −x2 + ax + > 0. 4 A 4. B 3. C 2. D 1. A 2. C Câu 113. Trong các dãy số sau, dãy số nào có giới hạn hữu hạn? √ 2n3 − 11n + 1 A un = . B u = n2 + 2n − n. n n2 − 2 1 √ C un = √ . D un = 3n + 2n . 2 2 n −2− n +4 1 1 1 1 Câu 114. Với n là số nguyên lớn hơn 2, đặt Sn = 3 + 3 + 3 + · · · + 3 . Tính lim Sn . C3 C4 C5 Cn 1 3 A . B 3. C . D 1. 3 2 Trang 11/21 − Mã đề 883 2×2 + (a − 2)x − a Câu 115. Cho lim 4 = 1 với a là tham số. Tính a2 + a + 1. x→1 x − 5×3 + 5×2 + 5x − 6 A 5. B 3. C 7. D −2. x+2 Câu 116. Cho hàm số f (x) = √ . Chọn khẳng định sai trong các khẳng định sau? x 4−x A Hàm số không liên tục tại x = 0 và x = 4. B Hàm số liên tục tại x = 2. C Hàm số xác định trên (−∞; 0) ∪ (0; 4). √ 1 D Vì f (−1) = − √ ; f (2) = 2 nên f (−1) · f (2) < 0, suy ra phương trình f (x) = 0 có ít 5 nhất 1 nghiệm thuộc (−1; 2).  √ 4 − x khi x 6= 4 x+5−3 Câu 117. Tìm giá trị của m để hàm số f (x) = liên tục tại x = 4.  1−m khi x = 4 A m = 2. B m = 0. C m = −5. D m = 7. 1 + 2 + 22 + . . . + 2n . Câu 118. Tính I = lim 3 · 2n − 2 1 A I= . B I = +∞. 3 1 C I= . 6 2 D I= . 3 r Câu 119. Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2018) để có lim 1 ? 2187 A 2011. 9n + 3n+1 ≤ 5n + 9n+a B 2009. C 2016. D 2019. √  x+2−2 khi x 6= 2 liên tục tai x = 2 là Câu 120. Giá trị của b để hàm số f (x) = x−2  2b + 1 khi x = 2 3 3 1 3 A − . B - . C - . D . 8 4 4 4 2 4 2n 1 + 3 + 3 + ... + 3 Câu 121. Tính lim . 1 + 5 + 52 + ... + 5n 3 A 1. B +∞. C . D 0. 5 √ x+4−2   nếu x > 0 x Câu 122. Cho hàm số f (x) = (với m là tham số). Tìm giá trị của  mx + m + 1 nếu x ≤ 0 4 tham số m để hàm số có giới hạn tại x = 0. 1 1 A m = 0. B m=− . C m = 1. D m= . 2 2 √ 3 1− 1−x Câu 123. Giá trị của lim bằng x→0 x 1 1 A . B 0. C 1. D . 9 3 √ 2 |x| + x + x Câu 124. Tính giới hạn lim . x→−∞ x+2 √ √ |x| + x2 + x |x| + x2 + x A lim = −2. B lim = 2. x→−∞ x→−∞ x√ +2 x√ +2 |x| + x2 + x |x| + x2 + x C lim = −∞. D lim = 0. x→−∞ x→−∞ x+2 x+2 Trang 12/21 − Mã đề 883 Câu 125. Cho dãy số (un ) với Tìm lim Sn . 5 A lim Sn = . 2  u1 = 1 un+1 1 = 3 3 B lim Sn = . 2 u2 u3 un   . Gọi Sn = u1 + + +· · ·+ . 1 2 3 n 1+ un , ∀ n ≥ 1 n 2 C lim Sn = . 3 5 D lim Sn = . 3 ( 2 4x − 5x ,x < 2 Câu 126. Giá trị của m đề hàm số f (x) = √ liên tục tại điểm x = 2 là x + 7 + 4m , x ≥ 2 3 4 A m = 3. B m= . C m = 4. D m= . 4 3  2  2x − 1 khi x < 0 . Mệnh đề nào dưới đây là sai? Câu 127. Cho hàm số f (x) = 1 khi x = 0   x + 1 khi x > 0 liên tục trên nửa khoảng [0; +∞). liên tục tại x = 1. gián đoạn tại x = 0. liên tục trên nửa khoảng (−∞; 0]. √  x+2−2 khi x 6= 2 liên tục tại x = 2. Câu 128. Tìm a để hàm số y = x−2  a + 2x khi x = 2 −15 15 1 A 1. B . C . D . 4 4 4 √ √ 2 4x − 2x + 1 − 1 − 2x Câu 129. Tính giới hạn lim . x→0 x A −1. B 2. C 0. D −2. A B C D Hàm Hàm Hàm Hàm số số số số đã đã đã đã cho cho cho cho 1 + 32 + 34 + … + 32n . 1 + 5 + 52 + … + 5n 3 A 0. B +∞. C 1. D . 5   √ Câu 131. Tính lim 3x + 1 − 9×2 − 6x + 1 . x→+∞ 1 1 A 2. B 4. C . D . 2 4 Câu 132. Trong bốn giới hạn sau đây, giới hạn nào có giá trị bằng 0 ? 2n + 1 1 − n3 A lim . B lim 2 . 3.2n − 3n n + 2n 2 n (2n + 1)(n − 3) 2 +3 C lim . D lim . n − 2n3 1 − 2n  2 khi x ≤ 1 x + mx √ Câu 133. Cho hàm số f (x) = . Tìm m để hàm số đã cho liên tục tại  x + 3 − 2 khi x > 1 x−1 x = 1. 1 3 A . B 2. C 0. D − . 3 4 √ x2 + 5 − 3 Câu 134. Tính lim . x→−2 x2 − x − 6 2 4 4 2 A − . B . C − . D . 15 9 9 15 Câu 130. Tính lim Trang 13/21 − Mã đề 883 √ √ 9 + 3×2 − 3 27 + 4×2 Câu 135. Tính lim . x→0 x2 19 17 7 A . B 0. C . D . 54 48 20 Câu 136. Dãy số nào sau đây có giới hạn bằng 0? √ 2n2 − 1 n2 − 2n 1 − 2n2 n2 − 2 √ A un = . B un = C u = D u = . . . n n 5n + 3 5n + 3n2 5n + 3n2 1 + 3n2 √  π 2 t+3−4 có nghiệm x ∈ 0; là Câu 137. Phương trình sin x = lim t→1 t−1 2 1 π A . B . C Vô nghiệm. D 30◦ . 2 6 √ 1−x−1 Câu 138. Giới hạn lim bằng x→0 x 1 1 A +∞. B . C 0. D − . 2 2 2  2x − 1 khi x < 0 . Mệnh đề nào dưới đây là sai? Câu 139. Cho hàm số f (x) = 1 khi x = 0  x + 1 khi x > 0 A B C D Hàm Hàm Hàm Hàm số số số số đã đã đã đã cho cho cho cho liên tục trên nửa khoảng (−∞; 0]. gián đoạn tại x = 0. liên tục tại x = 1. liên tục trên nửa khoảng [0; +∞). Câu 140. Tìm tất cả các giá trị của tham số m sao cho hàm số f (x) = ( √ 2 x − m với x ≥ 0 mx + 2 với x < 0 liên tục trên R. A m = 0. B m = ±2. C m = −2. D m = 2. x+2 Câu 141. Tính giới hạn lim . 2 x→−2 2x + 5x + 2 x+2 1 x+2 1 A lim =− . B lim = . 2 2 x→−2 2x + 5x + 2 x→−2 2x + 5x + 2 2 2 x+2 1 x+2 C lim =− . D lim = 0. x→−2 2x2 + 5x + 2 x→−2 2x2 + 5x + 2 3  2 − 16 x √ khi x > 4 x−2 Câu 142. Hàm số f (x) = liên tục tại x0 = 4 khi m nhận giá trị là  3x − m khi x ≤ 4 A 20. B −20. C −44. D 44. Câu 143. Trong bốn giới hạn sau đây, giới hạn nào bằng 0? 2n − 1 (2n − 1)(n + 3)2 A lim . B lim . 2 − 5 · 3n n2 − 2n3 10 − 2n3 3 · 5n + 2 . C lim 2 . D lim n + 5n 3 · 2n − 3n √ 1− 31−x Câu 144. Giá trị của lim bằng x→0 x 1 A 1. B 0. C . D 9 1 + 3 + 5 + 7 + · · · + (2n − 1) Câu 145. Tính lim · n. (2n + 1)2 (n + 1) 1 A 0. B . C +∞. D 2 1 . 3 1 . 4 Trang 14/21 − Mã đề 883 Câu 146. Hàm số nào trong các hàm số sau gián đoạn tại x = −3 và x = 1 x2 − 5x + 6 A y = x2 + 2x − 3. B y= . x−1 p x+2 C y= D y = (x + 3)(x − 1). . (x − 1)(4x + 12) x2 − (a + 1) x + a Câu 147. Giá trị của lim (a 6= 0) là x→a x 3 − a3 a−1 a−1 a+1 . A . B C +∞. D . 2 3a 3a 3a2  3 x − 4×2 + 3   khi x 6= 1 x − 1 . Xác định a để hàm số liên tục trên Câu 148. Cho hàm số f (x) =  ax + 5 khi x = 1 2 R. 15 15 5 5 A a=− . B a= . C a= . D a=− . 2 2 2 2  u 1 = 2 Câu 149. Cho dãy số (un ) xác định bởi . Tìm giới hạn lim un . un+1 = 2un + 1 5 √ 2 1 2 A +∞. B I= . C I= . D I= . 5 5 3 x Câu 150. Cho f (x) xác định trên khoảng (a; b) chứa điểm 0 và |f (x)| ≤ , ∀x ∈ 2017x + 1 (a, b){0}. Tính lim f (x). x→0 A lim f (x) = −1. B Hàm số không có giới hạn tại 0. C lim f (x) = 0. D lim f (x) = 1. x→0 x→0 x→0 1 ? 2 √ B lim( n2 + n − 1 − n). Câu 151. Trong các giới hạn sau đây, giới hạn nào bằng n3 − 2n − 3 . 2n2 + 1 2n2 − 2n − 3 C lim . n2 + 1 A lim Câu 152. Cho giới hạn lim x→−∞ A −5. n2 − 2n − 3 . 2n3 + 1 √ √  ax2 + x + 1 − x2 + bx − 2 = 1. Tính P = a · b. D lim B −3. Câu 153. Tính lim+ x→1 −2x + 1 . x−1 B −∞. C 3. D 5. D −2. √ √  1−x− 1+x   khi x < 0 x Câu 154. Tìm tất cả các giá trị của m để hàm số f (x) = 1−x   m + khi x ≥ 0 1+x liên tục tại x = 0. A m = −1. B m = 0. C m = −2. D m = 1. √ x − 2 − |x − 2| Câu 155. Tính lim+ . x→2 |4 − x2 | 1 A . B −∞. C 0. D +∞. 4 A +∞. C 2. Trang 15/21 − Mã đề 883 2 + 4 + 6 + · · · + 2n . x→−∞ n2 − n 1 A 2. B . 2 (√ 4 − x2 Câu 157. Cho hàm số f (x) = 1 khẳng định sau: Câu 156. Tìm lim C 1. D 0. với − 2 ≤ x ≤ 2 . Tìm khẳng định đúng trong các với x > 2 (I). f (x) liên tục tại x = 3. (II). f (x) liên tục tại x = −2. (III). lim f (x) = 0. x→2 A Cả (I), (II), (III). B Chỉ (I). C Chỉ (I) và (III). D Chỉ (I) và (II). a Câu 158. Cho a là hằng số. Giới hạn nào sau đây có giá trị bằng ? 2 a  √  A lim n2 + an + 2 − n . B lim n3 + 4n2 − 5an − 1 . 2 an2 − 4n + 2a 3 + a · 5n C lim . D . lim 2(n3 − 3n + 4) 4n+1 + 2 · 5n+1 √ √ 3 1 + 2x − 1 + 6x m m Câu 159. Cho lim = − ; trong đó m, n là các số tự nhiên, là phân số x→0 x n n tối giản. Giá trị của biểu thức A = m + n là A 11. B 9. C 8. D 10. f (x) − 16 = 24. Tính giới hạn sau x→1 x−1 Câu 160. Cho f (x) là một đa thức thỏa mãn lim lim x→1 A +∞. f (x) − 16 p  (x − 1) 2f (x) + 4 + 6 B 2. C 0. √ D 24. √ 3 x+3− x+7 Câu 161. Tìm giới hạn D = lim . x→−1 x2 − 3x + 2 3 1 A 0. B . C − . 7 6 2 x −2 Câu 162. Tính giới hạn lim . x→2 x − 2 A −∞. B +∞. C 2. 2 + 4 + 6 + · · · + 2n bằng (2n − 1)2 1 1 A +∞. B . C . 4 2 √  Câu 164. Tính giới hạn T = lim x2 + 2x + 5 − x . D 1 . 6 D Không tồn tại. Câu 163. Giá trị của lim D 0. x→+∞ A T = 0. B T = 1. √ 4x + 1 − 1 Câu 165. Tính giới hạn K = lim . x→0 x2 − 3x 2 A K = 0. B K= . 3 C T = −∞. D T = 2. 2 C K=− . 3 4 D K= . 3 Trang 16/21 − Mã đề 883 Câu 166. Biết lim √ x→+∞ nhiêu? A −72. 2×2 − 3x + 4 − B −26. √  a a 2x = √ với tối giản. Hỏi giá trị a · b bằng bao b b 2 C −6. D −10. ax2 + 4x + 3 Câu 167. Cho hàm số f (x) = , (a ∈ R, a 6= 0). Khi đó lim f (x) bằng x→−∞ 3x − 2ax2 a 1 A . B +∞. C −∞. D − . 3 2 √ √ 3 9 + 3×2 − 27 + 4×2 Câu 168. Tính lim . x→0 x2 7 17 19 A 0. B . C . D . 20 48 54 Câu 169. Tính lim (3×4 + 9×2 − 5). x→−∞ A −∞. B 2. D −2. C +∞. Câu 170. Trong dịp hội trại hè 2017 bạn An thả một quả bóng cao su từ độ cao 3 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng hai phần ba độ cao lần rơi trước. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng A 9 m. B 13 m. C 16 m. D 14 m. 1 Câu 171. Giới hạn nào sau đây có kết quả là ? 2 √ √   A lim x x2 + 1 + x . B lim x x2 + 1 − x . x→+∞ x→+∞   x √ 2 x √ 2 x +1−x . x +1+x . C lim D lim x→−∞ 2 x→−∞ 2 √ x+1− x+3 a a Câu 172. Cho lim = , ( là phân số tối giản). Tính 3a − b. 2 x→1 x −1 b b A −11. B 7. C 1. D −5. 1 + 2 + 22 + . . . + 2n Câu 173. Tính I = lim . 3 · 2n − 2 1 2 A I= . B I= . C I = +∞. 6 3 Câu 174. Cho đồ thị hàm số y = f (x) như hình vẽ. Xét các mệnh đề sau (I). lim f (x) = 2 1 D I= . 3 y 8 7 x→+∞ 6 (II). lim f (x) = −∞ x→−∞ 5 (III). lim − f (x) = 2 4 x→−1 3 (IV ). lim + f (x) = +∞ 2 x→−1 Có bao nhiêu mệnh đề đúng? x 1 −6 −5 −4 −3 −2 −1 O 1 2 3 4 5 A 2. B 4. C 3. D 1. √  Câu 175. Giá trị của lim n2 + 2n + 3 − n bằng A 2. B 0. C 1. D 3. ( u1 = 1 1 1 1 Câu 176. Cho dãy số (un ) với Gọi Sn = + + ··· + . u1 u2 u2 u3 un un+1 un+1 = un + 2, n ≥ 1. Tính L = lim Sn . 1 1 A L = 1. B L= . C L = 0. D L= . 2 6 Trang 17/21 − Mã đề 883 √ √ x+1− 3x+1 Câu 177. Tính lim . x→0 x 80 8 . . A B 481 47 √ √ 4n2 + 1 − n + 2 Câu 178. Tính lim . 2n − 3 A 2. B +∞. 1 . 6 D 7 . 41 C 1. D 3 . 2 C Câu 179. Cho một hàm số f (x). Khẳng định nào sau đây đúng? A Nếu hàm số f (x) liên tục, đồng biến trên đoạn [a; b] và f (a)f (b) > 0 thì phương trình f (x) = 0 không có nghiệm trong khoảng (a; b). B Nếu phương trình f (x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f (x) phải liên tục trên khoảng (a; b). C Nếu f (a)f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm trong khoảng (a, b). D Nếu f (x) liên tục trên đoạn [a; b], f (a)f (b) < 0 thì phương trình f (x) = 0 không có nghiệm trên khoảng (a; b). Câu 180. Giá trị của lim A 1 . 4 2 + 4 + 6 + · · · + 2n bằng (2n − 1)2 B +∞. Câu 181. Biết lim √ x→+∞ 2x2 − 3x + 4 − nhiêu? A −6. B −10. C 0. √ D 1 . 2  a a 2x = √ với tối giản. Hỏi giá trị a · b bằng bao b b 2 C −26. D −72. √ x2 + x − 2 2x + 1 − 1 và J = lim . Tính I + J. x→1 x→0 x x−1 A 3. B 5. C 2. D 4.  u1 = 2 Câu 183. Dãy số (un ) thỏa mãn . Tính lim un .  √ un+1 = 1 un + 2 4un + 1 + 2 , n ∈ N 9 1 1 2 3 A . B . C . D . 2 3 3 4  2 − (a − 2) x − 2  ax √ khi x 6= 1 Câu 184. Cho hàm số f (x) = . Có bao nhiêu giá trị của x+3−2  2 8+a khi x = 1 tham số a để hàm số liên tục tại x = 1. A 1. B 3. C 2. D 0. Câu 182. Cho I = lim Câu 185. Cho hàm số y = f (x) liên tục trên [a; b] và f (a)f (b) ≤ 0. Khẳng định nào sau đây là đúng? A Hàm số liên tục tại x = b. B f (x) = 0 luôn có ít nhất một nghiệm. C Hàm số liên tục trên tập số thưc. D Hàm số liên tục tại x = a. Câu 186. Tính lim A 1. 3n + cos2 n . 3n B +∞. C 0. D −1. Câu 187. Phương trình x4 + 8x3 + 11x2 − 32x − 60 = 0 A chỉ có một nghiệm trong khoảng (−5; 5). B không có nghiệm trong khoảng (−3; 0). C không có nghiệm trong khoảng (0; 3). D có hai nghiệm trong khoảng (−3; 3). Trang 18/21 − Mã đề 883 √ 7x6 + 3x4 + 5x2 . Câu 188. Tính lim x→0 6x √ √ √ 7 7 5 A Không tồn tại. B − C D . . . 6 6 6  |2x2 − 7x + 6|    khi x < 2 x − 2 Câu 189. Cho hàm số f (x) = . Biết a là giá trị để hàm số f (x) liên 1−x   a + khi x ≥ 2 2+x 7 tục tại x0 = 2, tìm số nghiệm nguyên của bất phương trình −x2 + ax + > 0. 4 A 4. B 3. C 1. D 2. √ 1+x−1 . Câu 190. Tính giới hạn lim x→0 x √ √ 1+x−1 1+x−1 1 A lim B lim =− . = +∞. x→0 √ x→0 √ x 2 x 1+x−1 1 1+x−1 = . = 0. C lim D lim x→0 x→0 x 2 x   1 1 a Câu 191. Giới hạn lim + 2 là một phân số tối giản (b > 0). Khi 2 x→2 3x − 4x − 4 x − 12x + 20 b đó giá trị của b − a bằng A 17. B 16. C 15. D 18. 3 x là Câu 192. Giới hạn lim 1 x→0 4− x A 3. B −3. 2+ C 3 . 4 D 1 . 2 1 Câu 193. Trong các giới hạn sau đây, giới hạn nào bằng ? 2 2 √ n − 2n − 3 A lim( n2 + n − 1 − n). B lim . 2n3 + 1 2n2 − 2n − 3 n3 − 2n − 3 C lim . D lim . n2 + 1 2n2 + 1 ( 2 4x − 5x ,x < 2 Câu 194. Giá trị của m đề hàm số f (x) = √ liên tục tại điểm x = 2 là x + 7 + 4m , x ≥ 2 3 4 A m= . B m = 4. C m= . D m = 3. 4 3 ( x2 − 2x nếu x 6= 1 Câu 195. Cho hàm số f (x) = . Chọn m bằng bao nhiêu để hàm số f (x) 2m + 1 nếu x = 1 liên tục tại x = 1? A m = −1. B m = 3. C m = 1. D m = 0. x2 − (a + 1) x + a (a 6= 0) là Câu 196. Giá trị của lim x→a x 3 − a3 a+1 a−1 a−1 A . B . C . 2 3a 3a 3a2 √ x2 − x − 1 − 1 Câu 197. Tính A = lim . x→2 x−2 3 A A = 1. B A = −3. C A= . 2 D +∞. D A = −1. Trang 19/21 − Mã đề 883 ax2 + bx − 5 Câu 198. Cho a, b là các số nguyên và lim = 7. Tính a2 + b2 + a + b. x→1 x−1 A 18. B 15. C 1. D 5. √  Câu 199. Cho số thực a thỏa mãn lim x2 + 5ax − 1 + x = 5. Số thực a thuộc khoảng nào x→−∞ sau đây? A (3; 10). C (−3; −1). B (1; 3). D (−10; −5). Câu 200. Dãy số nào sau đây có giới hạn bằng 0? √ n2 − 2 1 − 2n2 n2 − 2n 2n2 − 1 B un = C D u = u = . . . . A un = √ n n 5n + 3n2 5n + 3 5n + 3n2 1 + 3n2 √  x2 + 5ax − 1 + x = 5. Số thực a thuộc khoảng nào Câu 201. Cho số thực a thỏa mãn lim x→−∞ sau đây? A (3; 10). B (−3; −1). C (1; 3). D (−10; −5).  2x + 6   2 , x 6= ±3 Câu 202. Cho hàm số f (x) = 3x − 27 . Mệnh đề nào sau đây đúng?   −1 , x = ±30 9 A Hàm số liên tục tại mọi điểm trừ các điểm x thuộc khoảng (−3; 3). B Hàm số liên tục trên R. C Hàm số liên tục tại mọi điểm trừ điểm x = −3. D Hàm số liên tục tại mọi điểm trừ điểm x = 3. Câu 203. Cho hàm số  2  x + x − 6 khi x > 2 f (x) = x−2  − 2ax + 1 khi x ≤ 2. Xác định a để hàm số liên tục tại điểm x = 2. A a = 1. B a = 2. 1 C a= . 2 Câu 204. Cho hàm số f (x) chưa xác định tại x = 0, f (x) = D a = −1. x3 + 2×2 . Để hàm số f (x) liên tục x2 tại x = 0 thì phải gán cho f (0) giá trị bằng bao nhiêu? A 0. B 3. C 1. D 2.  u 1 = 2 Câu 205. Cho dãy số (un ) xác định bởi . Tìm giới hạn lim un . un+1 = 2un + 1 5 √ 2 1 2 A I= . B I= . C I= . D +∞. 3 5 5 Câu 206. Cho một hàm số f (x). Khẳng định nào sau đây đúng? A Nếu f (a)f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm trong khoảng (a, b). B Nếu hàm số f (x) liên tục, đồng biến trên đoạn [a; b] và f (a)f (b) > 0 thì phương trình f (x) = 0 không có nghiệm trong khoảng (a; b). C Nếu phương trình f (x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f (x) phải liên tục trên khoảng (a; b). D Nếu f (x) liên tục trên đoạn [a; b], f (a)f (b) < 0 thì phương trình f (x) = 0 không có nghiệm trên khoảng (a; b). Trang 20/21 − Mã đề 883 √ x+1− x+3 a a Câu 207. Cho lim = , ( là phân số tối giản). Tính 3a − b. 2 x→1 x −1 b b A −11. B 7. C −5. D 1.   1 1 a + = Câu 208. Giới hạn lim là một phân số tối giản (b > 0). x→2 3×2 − 4x − 4 x2 − 12x + 20 b Khi đó giá trị của biểu thức b − a bằng A 16. B 15. C 18. D 17. 2×2 + (a − 2)x − a = 1 với a là tham số. Tính a2 + a + 1. x→1 x4 − 5×3 + 5×2 + 5x − 6 B 7. C 5. D −2. Câu 209. Cho lim A 3. 2an3 − 4n2 + 2an + 1 Câu 210. Cho a, b là các hằng số, b khác 0. Tính lim . bn3 − 5bn + 3b − 1 2a A 1. B . C 2. D 0. b   x a a √ Câu 211. Cho lim √ = ( với là phân số tối giản). Tính tổng L = 7 x→0 b b x+1· x+4−2 a + b. A L = 43. B L = 53. C L = 13. D L = 23. √ 2 Câu 212. Giá trị của giới hạn lim ( 2x − x + 2017) là √x→+∞ A +∞. B 2 − 1. C Không xác định. D −∞. √  2  x −x+4−2 , x 6= 1 Câu 213. Tìm các giá trị của m sao cho hàm số f (x) = liên tục x−1  mx + 1, x=1 trên R. 3 2 5 1 A m=− . B m= . C m= . D m= . 4 5 4 2 n n 5 +4·3 Câu 214. lim n+1 bằng 5 −1 1 A 4. B . C 0. D +∞. 5 Câu 215. Cho hàm số f (x) = ax3 − x + 1. Tìm điều kiện của a để hàm số liên tục tại x = 0. A ∀a. B a = 0. C a 6= 0. D a = 1. x2 − 42018 bằng x→2 x − 22018 A 2. B 22018 . C 22019 . D +∞.  2  2x − x − 1 , x 6= 1 Câu 217. Cho hàm số f (x) = . Giá trị của m để hàm số f (x) liên tục tại x−1  m ,x = 1 x = 1 là A m = 4. B m = 1. C m = 3. D m = 2.   n − n2 1 là Câu 218. Giá trị của giới hạn lim −√ 2 3 + 2n n 1 1 A . B 1. C −1. D − . 2 2 Câu 216. lim 2018 HẾT Trang 21/21 − Mã đề 883 ĐÁP ÁN MÃ ĐỀ 883 1 B 24 D 47 A 70 D 93 B 116 D 139 A 162 D 185 B 2 B 25 A 48 D 71 B 94 B 117 D 140 C 163 B 186 A 3 C 26 A 49 A 72 B 95 A 118 D 141 C 164 B 187 D 4 C 27 B 50 B 73 D 96 B 119 A 142 B 165 C 188 A 5 A 28 A 51 D 74 B 97 A 120 A 143 A 166 C 189 D 6 B 29 B 52 A 75 B 98 A 121 B 144 D 167 D 190 C 7 B 30 D 53 B 76 C 99 A 122 A 145 A 168 D 191 A 8 A 31 C 54 D 77 C 100 B 123 D 146 D 169 C 192 B 9 D 32 B 55 C 78 D 101 B 124 A 147 A 170 A 193 A 10 C 33 B 56 C 79 D 102 C 125 B 148 A 171 B 194 A 11 B 34 C 57 C 80 A 103 D 126 B 149 D 172 C 195 A 12 B 35 D 58 C 81 D 104 C 127 D 150 C 173 B 196 C 13 C 36 C 59 C 82 B 105 B 128 B 151 B 174 A 197 C 14 C 37 C 60 B 83 A 106 B 129 C 152 C 175 C 198 A 15 D 38 C 61 D 84 D 107 A 130 B 153 A 176 B 199 C 16 D 39 D 62 B 85 A 108 A 131 A 154 C 177 C 200 D 17 D 40 A 63 A 86 B 109 D 132 A 155 D 178 C 201 B 18 C 41 A 64 D 87 B 110 D 133 D 156 C 179 A 202 D 19 A 42 C 65 C 88 A 111 D 134 D 157 B 180 A 203 D 20 A 43 A 66 D 89 A 112 B 135 A 158 A 181 A 204 D 21 C 44 B 67 D 90 B 113 B 136 C 159 D 182 D 205 A 22 B 45 A 68 D 91 D 114 C 137 B 160 B 183 D 206 B 23 A 46 C 69 C 92 B 115 C 138 D 161 C 184 C 207 D 208 D 209 B 210 B 211 A 212 A 213 A 214 B 215 A 216 C 217 C 218 D Trang 1/1 − Đáp án mã đề 883
guest
0 Comments
Inline Feedbacks
View all comments

Bài viết tương tự

Scroll to Top